Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(dy)/(dt)=t^2
\frac{dy}{dt}=t^{2}
derivative of y=(csc(x^2))/(7x-cos^2(x))
derivative\:y=\frac{\csc(x^{2})}{7x-\cos^{2}(x)}
laplacetransform 2t^2e^t
laplacetransform\:2t^{2}e^{t}
(d^3)/(dx^3)(e^{x^2})
\frac{d^{3}}{dx^{3}}(e^{x^{2}})
integral of x/((1-x^2)^{3/2)}
\int\:\frac{x}{(1-x^{2})^{\frac{3}{2}}}dx
(\partial)/(\partial y)(x/(sqrt(x^2+y^2)))
\frac{\partial\:}{\partial\:y}(\frac{x}{\sqrt{x^{2}+y^{2}}})
integral from 1200 to 1210 of 0.1x
\int\:_{1200}^{1210}0.1xdx
limit as x approaches 0 of x^3*ln(x)
\lim\:_{x\to\:0}(x^{3}\cdot\:\ln(x))
(\partial)/(\partial z)(3)
\frac{\partial\:}{\partial\:z}(3)
derivative of sin(sqrt(x^2))
derivative\:\sin(\sqrt{x^{2}})
derivative of f(s)=8^{sqrt(2s-1)}
derivative\:f(s)=8^{\sqrt{2s-1}}
limit as x approaches infinity of-5/x
\lim\:_{x\to\:\infty\:}(-\frac{5}{x})
derivative of (x-7/(sqrt(x)-\sqrt{7)})
\frac{d}{dx}(\frac{x-7}{\sqrt{x}-\sqrt{7}})
derivative of {g}(h,x(h(x)))
\frac{d}{dx}({g}(h,x)(h(x)))
integral from 0 to 2 of xe^{4x}
\int\:_{0}^{2}xe^{4x}dx
y^'=y^3,y(0)=1
y^{\prime\:}=y^{3},y(0)=1
(dy)/(dt)+1/2 y=17sin(2t)
\frac{dy}{dt}+\frac{1}{2}y=17\sin(2t)
integral of cos(sqrt(2x))
\int\:\cos(\sqrt{2x})dx
integral of (tan(x))^4
\int\:(\tan(x))^{4}dx
derivative of (x^2-5x+4/(|x-1|))
\frac{d}{dx}(\frac{x^{2}-5x+4}{\left|x-1\right|})
derivative of x^{1-a}
\frac{d}{dx}(x^{1-a})
(\partial)/(\partial x)(e^{y/x}*y)
\frac{\partial\:}{\partial\:x}(e^{\frac{y}{x}}\cdot\:y)
limit as x approaches 1 of (e^{x-1}-1)/(ln^2(x))
\lim\:_{x\to\:1}(\frac{e^{x-1}-1}{\ln^{2}(x)})
area x^2-4x+3,3+4x-x^2
area\:x^{2}-4x+3,3+4x-x^{2}
integral from-1 to 1 of (x^2-1)
\int\:_{-1}^{1}(x^{2}-1)dx
(\partial)/(\partial z)(sin(x+2y+3z))
\frac{\partial\:}{\partial\:z}(\sin(x+2y+3z))
derivative of f(x)=6x^2(x-9)
derivative\:f(x)=6x^{2}(x-9)
(\partial)/(\partial x)(2/(x^3))
\frac{\partial\:}{\partial\:x}(\frac{2}{x^{3}})
integral of (sqrt(4x^2-9))/x
\int\:\frac{\sqrt{4x^{2}-9}}{x}dx
limit as x approaches 2 of (x^2-4)/(2-x)
\lim\:_{x\to\:2}(\frac{x^{2}-4}{2-x})
integral of e^x+9x
\int\:e^{x}+9xdx
derivative of (x-a^2)
\frac{d}{dx}((x-a)^{2})
derivative of sin^2(x)
derivative\:\sin^{2}(x)
derivative of sin^2(xcot(5x))
\frac{d}{dx}(\sin^{2}(x)\cot(5x))
inverse oflaplace (4s-36)/(s^2-8s+15)
inverselaplace\:\frac{4s-36}{s^{2}-8s+15}
slope of (0.5)(1)
slope\:(0.5)(1)
d/(du)(ln(u))
\frac{d}{du}(\ln(u))
(y^2-2xy)dx+x^2dy=0
(y^{2}-2xy)dx+x^{2}dy=0
derivative of e^{sqrt(x^2-2x)}
\frac{d}{dx}(e^{\sqrt{x^{2}-2x}})
inverse oflaplace 1/(s^2(s+3))
inverselaplace\:\frac{1}{s^{2}(s+3)}
inverse oflaplace 1/((s^2+4s+5))
inverselaplace\:\frac{1}{(s^{2}+4s+5)}
sum from n=0 to infinity of 1/(4^n)
\sum\:_{n=0}^{\infty\:}\frac{1}{4^{n}}
derivative of f(x)=(\sqrt[3]{x})/(x-6)
derivative\:f(x)=\frac{\sqrt[3]{x}}{x-6}
limit as x approaches 3 of f(x)(x-1)
\lim\:_{x\to\:3}(f(x)(x-1))
(\partial)/(\partial y)(x-y)
\frac{\partial\:}{\partial\:y}(x-y)
limit as x approaches 0 of ((11^x-1))/x
\lim\:_{x\to\:0}(\frac{(11^{x}-1)}{x})
integral of 5/(cos(x)-1)
\int\:\frac{5}{\cos(x)-1}dx
integral of ycos(x/y)
\int\:y\cos(\frac{x}{y})dx
derivative of f(x)=2(sin^3(x))
derivative\:f(x)=2(\sin^{3}(x))
integral of (sin(2x))/(14+cos^2(x))
\int\:\frac{\sin(2x)}{14+\cos^{2}(x)}dx
y^'+2/x y=y^2,y(1)=3
y^{\prime\:}+\frac{2}{x}y=y^{2},y(1)=3
derivative of a/(2y)
\frac{d}{dx}(\frac{a}{2y})
t^3y^'+4t^2y=0
t^{3}y^{\prime\:}+4t^{2}y=0
integral of (3sin^3(x))/(cos(x))
\int\:\frac{3\sin^{3}(x)}{\cos(x)}dx
(\partial)/(\partial x)(2x^2+3y^2+z^2)
\frac{\partial\:}{\partial\:x}(2x^{2}+3y^{2}+z^{2})
derivative of (2x+1/(x-3))
\frac{d}{dx}(\frac{2x+1}{x-3})
derivative of sin(ln(3x^2+x))
\frac{d}{dx}(\sin(\ln(3x^{2}+x)))
derivative of-(10/(10-x))
\frac{d}{dx}(-\frac{10}{10-x})
integral of 1/(x*sqrt(1-x^2))
\int\:\frac{1}{x\cdot\:\sqrt{1-x^{2}}}dx
derivative of axe^{2x}
\frac{d}{dx}(axe^{2x})
tangent of f(x)=x^3+x^2+(6/x),\at x=1
tangent\:f(x)=x^{3}+x^{2}+(\frac{6}{x}),\at\:x=1
tangent of y=(x-4)^2,\at x=5
tangent\:y=(x-4)^{2},\at\:x=5
(dy)/(dt)=-2y+10
\frac{dy}{dt}=-2y+10
integral of x^3(x^4-1)^5
\int\:x^{3}(x^{4}-1)^{5}dx
tangent of y=4e^xcos(x),(0,4)
tangent\:y=4e^{x}\cos(x),(0,4)
(\partial)/(\partial x)(x*e^y+ln(x)*y)
\frac{\partial\:}{\partial\:x}(x\cdot\:e^{y}+\ln(x)\cdot\:y)
derivative of v/(v+c/v)
derivative\:\frac{v}{v+\frac{c}{v}}
integral from 0 to 1 of e^{-5x^2}
\int\:_{0}^{1}e^{-5x^{2}}dx
limit as x approaches infinity of e^{1/2-1/(x^2)}-1
\lim\:_{x\to\:\infty\:}(e^{\frac{1}{2}-\frac{1}{x^{2}}}-1)
sum from n=1 to infinity of 1(1/6)^n
\sum\:_{n=1}^{\infty\:}1(\frac{1}{6})^{n}
sum from n=1 to infinity of n^n(x-3)^n
\sum\:_{n=1}^{\infty\:}n^{n}(x-3)^{n}
integral from 0 to pi/2 of (cos(θ))/(sqrt(1+sin(θ)))
\int\:_{0}^{\frac{π}{2}}\frac{\cos(θ)}{\sqrt{1+\sin(θ)}}dθ
sum from n=0 to infinity of 2((-2)/3)^n
\sum\:_{n=0}^{\infty\:}2(\frac{-2}{3})^{n}
(dy)/(dx)=e^{-(x+y)}
\frac{dy}{dx}=e^{-(x+y)}
integral of e^{-x+2}
\int\:e^{-x+2}dx
area y=4(x+1),y=5(x+1),x=5
area\:y=4(x+1),y=5(x+1),x=5
derivative of f(x)=9sin(x)cos(x)
derivative\:f(x)=9\sin(x)\cos(x)
integral of sin(x)cos(2x)
\int\:\sin(x)\cos(2x)dx
taylor cos(x^3)
taylor\:\cos(x^{3})
integral from 1 to infinity of 5e^{-5x}
\int\:_{1}^{\infty\:}5e^{-5x}dx
integral of e^{-x^2}
\int\:e^{-x^{2}}dx
integral of ((2z))/(\sqrt[3]{z^2+1)}
\int\:\frac{(2z)}{\sqrt[3]{z^{2}+1}}dz
derivative of e^{x^2-x+1}
\frac{d}{dx}(e^{x^{2}-x+1})
derivative of x^4+4x^3-2x^2-12x
\frac{d}{dx}(x^{4}+4x^{3}-2x^{2}-12x)
derivative of 10^{-2x}
\frac{d}{dx}(10^{-2x})
integral of (x^2)/(sqrt(2x-1))
\int\:\frac{x^{2}}{\sqrt{2x-1}}dx
inverse oflaplace 8/((9s^2+12s+4)(s))
inverselaplace\:\frac{8}{(9s^{2}+12s+4)(s)}
integral of x*e^{x^2}
\int\:x\cdot\:e^{x^{2}}dx
(d^2x)/(dt^2)+9x=-sin(3t)
\frac{d^{2}x}{dt^{2}}+9x=-\sin(3t)
(\partial}{\partial x}(ln(\frac{2xy)/z))
\frac{\partial\:}{\partial\:x}(\ln(\frac{2xy}{z}))
integral of (5x)/(3x^{1/3)}
\int\:\frac{5x}{3x^{\frac{1}{3}}}dx
integral from-1 to 1 of (\sqrt[3]{t-2})
\int\:_{-1}^{1}(\sqrt[3]{t-2})dt
tangent of y=1.1x+e^x,(0,1)
tangent\:y=1.1x+e^{x},(0,1)
volumeabout y=0,y=x^2,y=4x-x^2,[0,2]
volumeabout\:y=0,y=x^{2},y=4x-x^{2},[0,2]
(1+cos(t))y^'=(1+e^{-y})sin(t),y(0)=0
(1+\cos(t))y^{\prime\:}=(1+e^{-y})\sin(t),y(0)=0
derivative of (x^2+5)(8-x)
derivative\:(x^{2}+5)(8-x)
integral of (2x)/(1+4x^2)
\int\:\frac{2x}{1+4x^{2}}dx
derivative of 6/(x^3)
derivative\:\frac{6}{x^{3}}
integral of (3x^2)/(4sqrt(5-x^3))
\int\:\frac{3x^{2}}{4\sqrt{5-x^{3}}}dx
tangent of f(x)=3x^2-3x,\at x=3
tangent\:f(x)=3x^{2}-3x,\at\:x=3
1
..
161
162
163
164
165
..
2459