Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (x+4)/(x^2+4)
\int\:\frac{x+4}{x^{2}+4}dx
area (x+2)^3,2x^2-8x+8,0
area\:(x+2)^{3},2x^{2}-8x+8,0
limit as x approaches 1 of x+4-12
\lim\:_{x\to\:1}(x+4-12)
tangent of f(x)=sqrt(x+2),\at x=1
tangent\:f(x)=\sqrt{x+2},\at\:x=1
derivative of f(x)=log_{4}(3x^2+1)
derivative\:f(x)=\log_{4}(3x^{2}+1)
limit as x approaches 14-of 15x+ln(14-x)
\lim\:_{x\to\:14-}(15x+\ln(14-x))
laplacetransform (1+e^{-t})^2
laplacetransform\:(1+e^{-t})^{2}
tangent of y=x^{sin(x)}
tangent\:y=x^{\sin(x)}
derivative of t^2-8t+16
derivative\:t^{2}-8t+16
derivative of (2x^{6x})
\frac{d}{dx}((2x)^{6x})
limit as x approaches-infinity of x^2e^{-3x}
\lim\:_{x\to\:-\infty\:}(x^{2}e^{-3x})
derivative of x-e^x
derivative\:x-e^{x}
integral of (x-1)^{-2}
\int\:(x-1)^{-2}dx
(\partial)/(\partial x)(arccos(x/y))
\frac{\partial\:}{\partial\:x}(\arccos(\frac{x}{y}))
integral of sin^3(11x)cos^2(11x)
\int\:\sin^{3}(11x)\cos^{2}(11x)dx
derivative of (1+1/x ^x)
\frac{d}{dx}((1+\frac{1}{x})^{x})
laplacetransform 0.025sin((2pit)/(10))
laplacetransform\:0.025\sin(\frac{2πt}{10})
derivative of x/((x-2^2))
\frac{d}{dx}(\frac{x}{(x-2)^{2}})
integral from 1 to ln(8) of integral from 0 to ln(y) of e^{x+y}
\int\:_{1}^{\ln(8)}\int\:_{0}^{\ln(y)}e^{x+y}dxdy
(dy)/(dx)= 1/(4x)
\frac{dy}{dx}=\frac{1}{4x}
integral of x/((x^2+1)^{1/2)}
\int\:\frac{x}{(x^{2}+1)^{\frac{1}{2}}}dx
area x^4-9x^2,x^2-9,0,3
area\:x^{4}-9x^{2},x^{2}-9,0,3
integral of x/(x^2+64)
\int\:\frac{x}{x^{2}+64}dx
(dy)/(dx)=7y^2sin(x)
\frac{dy}{dx}=7y^{2}\sin(x)
integral of (e^x)/(2+e^x)
\int\:\frac{e^{x}}{2+e^{x}}dx
(\partial)/(\partial x)(xe^{2xy})
\frac{\partial\:}{\partial\:x}(xe^{2xy})
xy^2(dy)/(dx)=y^3-x^3,y(1)=1
xy^{2}\frac{dy}{dx}=y^{3}-x^{3},y(1)=1
derivative of f(x)-2x^2
derivative\:f(x)-2x^{2}
(\partial)/(\partial x)(x^2y-xy^2)
\frac{\partial\:}{\partial\:x}(x^{2}y-xy^{2})
tangent of f(x)=sqrt(2x+3),(3,3)
tangent\:f(x)=\sqrt{2x+3},(3,3)
derivative of y=6ln(x)-x^3+2\sqrt[3]{x}
derivative\:y=6\ln(x)-x^{3}+2\sqrt[3]{x}
limit as x approaches infinity of arctan(8x)
\lim\:_{x\to\:\infty\:}(\arctan(8x))
integral from 1 to infinity of 9/(x^4)
\int\:_{1}^{\infty\:}\frac{9}{x^{4}}dx
(\partial)/(\partial x)((x^4-1)(x^2+1))
\frac{\partial\:}{\partial\:x}((x^{4}-1)(x^{2}+1))
(\partial)/(\partial y)(ysin(x))
\frac{\partial\:}{\partial\:y}(y\sin(x))
limit as x approaches 2+of sqrt(2^x-4)
\lim\:_{x\to\:2+}(\sqrt{2^{x}-4})
limit as x approaches 1+of ln^x(x)
\lim\:_{x\to\:1+}(\ln^{x}(x))
integral of (4*x+3)/(x^2-25)
\int\:\frac{4\cdot\:x+3}{x^{2}-25}dx
y(x+3)+(dy)/(dx)=0
y(x+3)+\frac{dy}{dx}=0
integral of-7sin(x)+4cos(x)
\int\:-7\sin(x)+4\cos(x)dx
derivative of ln(x/(x-1))
derivative\:\ln(\frac{x}{x-1})
integral of tan^3(2x)sec^5(2x)
\int\:\tan^{3}(2x)\sec^{5}(2x)dx
derivative of e^{2x}cos(4x)
\frac{d}{dx}(e^{2x}\cos(4x))
integral of 4x(2x^2+1)^7
\int\:4x(2x^{2}+1)^{7}dx
integral of 6x^4-5x^3+5x^2+C
\int\:6x^{4}-5x^{3}+5x^{2}+Cdx
(dy)/(dx)=e^{2y-x}
\frac{dy}{dx}=e^{2y-x}
tangent of y=(7x-4)(2+6x)
tangent\:y=(7x-4)(2+6x)
limit as x approaches infinity of arctan(1-x)
\lim\:_{x\to\:\infty\:}(\arctan(1-x))
limit as x approaches 0+of arctan(ln(x))
\lim\:_{x\to\:0+}(\arctan(\ln(x)))
(dv)/(dx)-1/x v=8
\frac{dv}{dx}-\frac{1}{x}v=8
derivative of (ln(x))/(e^x)
derivative\:\frac{\ln(x)}{e^{x}}
limit as x approaches 0 of 5/x-5/(|x|)
\lim\:_{x\to\:0}(\frac{5}{x}-\frac{5}{\left|x\right|})
area f(x)=x,g(x)=sqrt(x),[0,2]
area\:f(x)=x,g(x)=\sqrt{x},[0,2]
integral from 2 to 25 of sin(2x)
\int\:_{2}^{25}\sin(2x)dx
(\partial)/(\partial x)(dx)
\frac{\partial\:}{\partial\:x}(dx)
integral of (6x+8)
\int\:(6x+8)dx
integral of 1/(sqrt((1-x^2)))
\int\:\frac{1}{\sqrt{(1-x^{2})}}dx
10y^{''}+80y^'+200y=0
10y^{\prime\:\prime\:}+80y^{\prime\:}+200y=0
derivative of f(x)= x/(sqrt(x^2+2))
derivative\:f(x)=\frac{x}{\sqrt{x^{2}+2}}
d/(d{r)}(6((6{r}-1)*k+{r})-1)
\frac{d}{d{r}}(6((6{r}-1)\cdot\:k+{r})-1)
(\partial)/(\partial x)(ln(x/(x+y)))
\frac{\partial\:}{\partial\:x}(\ln(\frac{x}{x+y}))
sum from n=1 to infinity of 1/((n+2)^2)
\sum\:_{n=1}^{\infty\:}\frac{1}{(n+2)^{2}}
tangent of y= 3/(sqrt(16-x)),\at x=0
tangent\:y=\frac{3}{\sqrt{16-x}},\at\:x=0
integral of xe^{-x(y+1)}
\int\:xe^{-x(y+1)}dx
integral of ((2x-1)^2)/(2x)
\int\:\frac{(2x-1)^{2}}{2x}dx
integral from 0 to 1/2 of 1
\int\:_{0}^{\frac{1}{2}}1dx
integral of (3x^2+1)^3
\int\:(3x^{2}+1)^{3}dx
(dy)/(dx)+ycos(x)=2cos(x),y(0)=4
\frac{dy}{dx}+y\cos(x)=2\cos(x),y(0)=4
f(x)=sin(x)ln(2x)
f(x)=\sin(x)\ln(2x)
derivative of sec(θ)
derivative\:\sec(θ)
(\partial)/(\partial y)(2x^3y^2)
\frac{\partial\:}{\partial\:y}(2x^{3}y^{2})
integral of 4xln(2x)
\int\:4x\ln(2x)dx
tangent of f(x)=x^2-5x+5,\at x=a
tangent\:f(x)=x^{2}-5x+5,\at\:x=a
integral of (-x)/(x-1)
\int\:\frac{-x}{x-1}dx
integral of sin^3(θ)cos^4(θ)
\int\:\sin^{3}(θ)\cos^{4}(θ)dθ
integral of 4/(xln^3(x))
\int\:\frac{4}{x\ln^{3}(x)}dx
laplacetransform e^{-(t-3)}
laplacetransform\:e^{-(t-3)}
limit as x approaches 0+of 4/(5x^{1/3)}
\lim\:_{x\to\:0+}(\frac{4}{5x^{\frac{1}{3}}})
(dy}{dx}=\frac{y+sqrt(x^2+y^2))/x
\frac{dy}{dx}=\frac{y+\sqrt{x^{2}+y^{2}}}{x}
derivative of (2x^3-5(x^2-5ln(x)))
\frac{d}{dx}((2x^{3}-5)(x^{2}-5\ln(x)))
derivative of x/(csc(x))
\frac{d}{dx}(\frac{x}{\csc(x)})
f^'(x)=(e^x)/x
f^{\prime\:}(x)=\frac{e^{x}}{x}
(\partial)/(\partial y)(3ze^{xy})
\frac{\partial\:}{\partial\:y}(3ze^{xy})
integral of (2x+32)/(x^2+8x+7)
\int\:\frac{2x+32}{x^{2}+8x+7}dx
derivative of y= 1/2 x^3
derivative\:y=\frac{1}{2}x^{3}
derivative of 1/((x+7^2))
\frac{d}{dx}(\frac{1}{(x+7)^{2}})
parity f(x)=x*tan(x^2)
parity\:f(x)=x\cdot\:\tan(x^{2})
(\partial)/(\partial y)(3x^2y+e^y)
\frac{\partial\:}{\partial\:y}(3x^{2}y+e^{y})
derivative of y=8sqrt(x)+6x^{3/4}
derivative\:y=8\sqrt{x}+6x^{\frac{3}{4}}
(dy)/(dt)= t/(t^2y+y),y(0)=-9
\frac{dy}{dt}=\frac{t}{t^{2}y+y},y(0)=-9
(\partial)/(\partial z)(x^2-xyz)
\frac{\partial\:}{\partial\:z}(x^{2}-xyz)
y^{''}-y^'-42y=0
y^{\prime\:\prime\:}-y^{\prime\:}-42y=0
derivative of (3x+2^x)
\frac{d}{dx}((3x+2)^{x})
y^{''}+y^'+4y=0
y^{\prime\:\prime\:}+y^{\prime\:}+4y=0
derivative of 6sqrt(x)sin(x)
derivative\:6\sqrt{x}\sin(x)
(\partial)/(\partial y)(x^{x/y}cos(x/y))
\frac{\partial\:}{\partial\:y}(x^{\frac{x}{y}}\cos(\frac{x}{y}))
((4-x^{2/3})^{3/2})^'
((4-x^{\frac{2}{3}})^{\frac{3}{2}})^{\prime\:}
derivative of f(x)=(1+2x)/(3+x)
derivative\:f(x)=\frac{1+2x}{3+x}
f(x)=(x-1)e^{x^2-4}
f(x)=(x-1)e^{x^{2}-4}
implicit (dy)/(dx),xy-4x=5
implicit\:\frac{dy}{dx},xy-4x=5
1
..
174
175
176
177
178
..
2459