Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of f(x)=4^x
range\:f(x)=4^{x}
domain of f(x)=5x-3
domain\:f(x)=5x-3
domain of f(x)=(sqrt(x-4))/(4x-24)
domain\:f(x)=\frac{\sqrt{x-4}}{4x-24}
asymptotes of f(x)=(x^2+4)/(x-1)
asymptotes\:f(x)=\frac{x^{2}+4}{x-1}
inverse of f(x)= 3/(x+7)
inverse\:f(x)=\frac{3}{x+7}
domain of f(x)=2sqrt(-(x-1))
domain\:f(x)=2\sqrt{-(x-1)}
domain of sqrt(2/x-1)
domain\:\sqrt{\frac{2}{x}-1}
midpoint (-7,4),(3,-1)
midpoint\:(-7,4),(3,-1)
inverse of 1/(x-5)
inverse\:\frac{1}{x-5}
periodicity of f(t)=-tan(0.4t)
periodicity\:f(t)=-\tan(0.4t)
slope ofintercept 3y-2x=9
slopeintercept\:3y-2x=9
domain of (3x-4)/(x(x-1))
domain\:\frac{3x-4}{x(x-1)}
intercepts of f(x)=6x-5y=-6
intercepts\:f(x)=6x-5y=-6
inverse of f(x)=2sin(x+1)
inverse\:f(x)=2\sin(x+1)
intercepts of f(x)=x^3-2x^2-4x+8
intercepts\:f(x)=x^{3}-2x^{2}-4x+8
range of f(x)=-5x^2
range\:f(x)=-5x^{2}
slope ofintercept-4x+2y=2
slopeintercept\:-4x+2y=2
inverse of (e^{2x}-1)/(e^{2x)+1}
inverse\:\frac{e^{2x}-1}{e^{2x}+1}
domain of 9/(x^2-1)
domain\:\frac{9}{x^{2}-1}
simplify (-7.4)(1.8)
simplify\:(-7.4)(1.8)
domain of f(x)=2y-3x=-8
domain\:f(x)=2y-3x=-8
domain of x^2-x-3
domain\:x^{2}-x-3
intercepts of f(x)=-x^2+6x-9
intercepts\:f(x)=-x^{2}+6x-9
critical f(x)=(x+3)e^{-x}
critical\:f(x)=(x+3)e^{-x}
symmetry x^3-6x^2+9x
symmetry\:x^{3}-6x^{2}+9x
midpoint (6,-2),(-1,0)
midpoint\:(6,-2),(-1,0)
domain of f(x)= 1/(\sqrt[4]{x^2-3x)}
domain\:f(x)=\frac{1}{\sqrt[4]{x^{2}-3x}}
asymptotes of f(x)=((7e^x))/(e^x-2)
asymptotes\:f(x)=\frac{(7e^{x})}{e^{x}-2}
critical f(x)=x^3-4x^2+x+6
critical\:f(x)=x^{3}-4x^{2}+x+6
range of f(x)= x/(6-x)
range\:f(x)=\frac{x}{6-x}
periodicity of y=cos(x-pi/2)
periodicity\:y=\cos(x-\frac{π}{2})
parity f(x)=-2x^4+7x^2
parity\:f(x)=-2x^{4}+7x^{2}
domain of (x+4)/(2x)
domain\:\frac{x+4}{2x}
asymptotes of f(x)=(x^2)/(2x-1)
asymptotes\:f(x)=\frac{x^{2}}{2x-1}
domain of f(x)=(x-8)/(5x^2)
domain\:f(x)=\frac{x-8}{5x^{2}}
domain of 4+8x-5x^2
domain\:4+8x-5x^{2}
domain of f(x)=(sqrt(x))/(2x-1)
domain\:f(x)=\frac{\sqrt{x}}{2x-1}
asymptotes of f(x)=-x^2
asymptotes\:f(x)=-x^{2}
distance (-4,-18),(3,-15)
distance\:(-4,-18),(3,-15)
domain of sqrt(3x-12)
domain\:\sqrt{3x-12}
slope ofintercept y+3= 1/2 (x+4)
slopeintercept\:y+3=\frac{1}{2}(x+4)
inverse of f(x)=4-3x
inverse\:f(x)=4-3x
domain of 4
domain\:4
simplify (7.2)(8.9)
simplify\:(7.2)(8.9)
asymptotes of f(x)=((-x^2-4x+5))/(4x-4)
asymptotes\:f(x)=\frac{(-x^{2}-4x+5)}{4x-4}
asymptotes of g(x)=x^2
asymptotes\:g(x)=x^{2}
asymptotes of y=(x^2-3x-10)/(x^2-5x-14)
asymptotes\:y=\frac{x^{2}-3x-10}{x^{2}-5x-14}
intercepts of (x+2)/(x^2-4)
intercepts\:\frac{x+2}{x^{2}-4}
inverse of f(x)=3x^2+5
inverse\:f(x)=3x^{2}+5
asymptotes of (x^2+x-6)/(-4x^2-16x-12)
asymptotes\:\frac{x^{2}+x-6}{-4x^{2}-16x-12}
slope ofintercept y= 1/2 x+4
slopeintercept\:y=\frac{1}{2}x+4
range of x^3-4x
range\:x^{3}-4x
critical f(x)=4-4x
critical\:f(x)=4-4x
domain of f(x)=2,-1<x<2
domain\:f(x)=2,-1<x<2
asymptotes of f(x)=2sec(2/3 x)-1
asymptotes\:f(x)=2\sec(\frac{2}{3}x)-1
domain of f(x)=(2x-12)/(x^2-12x)
domain\:f(x)=\frac{2x-12}{x^{2}-12x}
domain of f(x)=(x+1)/(sqrt(x-7))
domain\:f(x)=\frac{x+1}{\sqrt{x-7}}
range of f(x)=2x^2+2
range\:f(x)=2x^{2}+2
critical f(x)=x^2-2ln(x)
critical\:f(x)=x^{2}-2\ln(x)
intercepts of x^2-6x+10
intercepts\:x^{2}-6x+10
domain of x^3+7x^2+8x-16
domain\:x^{3}+7x^{2}+8x-16
asymptotes of f(x)= 4/(x-2)
asymptotes\:f(x)=\frac{4}{x-2}
periodicity of f(x)=cos^2(2pix)
periodicity\:f(x)=\cos^{2}(2πx)
domain of 4-6t
domain\:4-6t
extreme f(x)=0.5x^3-3x^2-10x-7
extreme\:f(x)=0.5x^{3}-3x^{2}-10x-7
inflection f(x)=(x-1)/(x+2)
inflection\:f(x)=\frac{x-1}{x+2}
inverse of y=3x
inverse\:y=3x
intercepts of x^2+8x+15
intercepts\:x^{2}+8x+15
monotone f(x)=x^3-4x
monotone\:f(x)=x^{3}-4x
symmetry y=x^2+2
symmetry\:y=x^{2}+2
inverse of f(x)=(8x-10)/(-8x-1)
inverse\:f(x)=\frac{8x-10}{-8x-1}
asymptotes of f(x)=(x^2+1)/(7x-2x^2)
asymptotes\:f(x)=\frac{x^{2}+1}{7x-2x^{2}}
slope of 7x+5y=10
slope\:7x+5y=10
intercepts of y=27-x^3
intercepts\:y=27-x^{3}
range of x^3-1
range\:x^{3}-1
domain of f(x)=x^2+4x-5
domain\:f(x)=x^{2}+4x-5
range of f(x)=\sqrt[3]{x+4}
range\:f(x)=\sqrt[3]{x+4}
extreme f(x)=-x^3-3x^2
extreme\:f(x)=-x^{3}-3x^{2}
symmetry x^2-6x-y+11=0
symmetry\:x^{2}-6x-y+11=0
domain of f(x)=(x+8)/(5+x)
domain\:f(x)=\frac{x+8}{5+x}
slope ofintercept-5x+4y=0
slopeintercept\:-5x+4y=0
domain of f(x)=(10x+40)/(x-5)
domain\:f(x)=\frac{10x+40}{x-5}
f(x)=sin(x/2)
f(x)=\sin(\frac{x}{2})
slope of y=-3/4 x+2
slope\:y=-\frac{3}{4}x+2
y=sin(x)
y=\sin(x)
domain of f(x)= 1/(x^2+2)
domain\:f(x)=\frac{1}{x^{2}+2}
intercepts of f(x)=-2(x-2)^2+7
intercepts\:f(x)=-2(x-2)^{2}+7
inverse of (3x+4)/(10x-12)
inverse\:\frac{3x+4}{10x-12}
inflection-x^4+4x^3-4x+19
inflection\:-x^{4}+4x^{3}-4x+19
intercepts of (3x)/(x+6)
intercepts\:\frac{3x}{x+6}
range of f(x)= 2/(x^2-16)
range\:f(x)=\frac{2}{x^{2}-16}
range of-2(3)^x
range\:-2(3)^{x}
parallel y=-2/3 x-5(6.1)
parallel\:y=-\frac{2}{3}x-5(6.1)
range of sin(2x)
range\:\sin(2x)
domain of f(x)=(sqrt(x+6))/(x-9)
domain\:f(x)=\frac{\sqrt{x+6}}{x-9}
inverse of 18500(0.09-x^2)
inverse\:18500(0.09-x^{2})
range of y=((5x-3))/(2x+6)
range\:y=\frac{(5x-3)}{2x+6}
domain of arccsc(x+7)
domain\:\arccsc(x+7)
inverse of f(x)=-3sqrt(x+2)-6
inverse\:f(x)=-3\sqrt{x+2}-6
domain of (x-4)/(3x-x^2)
domain\:\frac{x-4}{3x-x^{2}}
1
..
172
173
174
175
176
..
1324