Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
asymptotes of f(x)=(2x^2-10x+8)/(x^2-1)
asymptotes\:f(x)=\frac{2x^{2}-10x+8}{x^{2}-1}
inverse of x/(x-1)
inverse\:\frac{x}{x-1}
inverse of f(x)=1+sqrt(4+7x)
inverse\:f(x)=1+\sqrt{4+7x}
parity f(x)=2cos(x)
parity\:f(x)=2\cos(x)
symmetry y=x^3+x
symmetry\:y=x^{3}+x
f(x)=2x^2+4x+1
f(x)=2x^{2}+4x+1
intercepts of f(y)=9^{-x}
intercepts\:f(y)=9^{-x}
intercepts of f(x)= 3/(x+2)
intercepts\:f(x)=\frac{3}{x+2}
inverse of f(x)=x^2-9
inverse\:f(x)=x^{2}-9
perpendicular 4x+3y=12
perpendicular\:4x+3y=12
inverse of f(x)=7+\sqrt[3]{x}
inverse\:f(x)=7+\sqrt[3]{x}
domain of 4+sqrt(x+9)
domain\:4+\sqrt{x+9}
domain of f(-3)=4x^2-x-3
domain\:f(-3)=4x^{2}-x-3
inverse of y=x^{3/2}
inverse\:y=x^{\frac{3}{2}}
domain of 3/(3/x)
domain\:\frac{3}{\frac{3}{x}}
inverse of f(x)= x/(x-9)
inverse\:f(x)=\frac{x}{x-9}
inverse of f(x)=4x-5
inverse\:f(x)=4x-5
asymptotes of y=(7+x^4)/(x^2-x^4)
asymptotes\:y=\frac{7+x^{4}}{x^{2}-x^{4}}
extreme f(x)=x^3-9x^2+9
extreme\:f(x)=x^{3}-9x^{2}+9
inverse of f(x)=sqrt(x-6)+1
inverse\:f(x)=\sqrt{x-6}+1
domain of f(x)=(x-5)/(x+2)
domain\:f(x)=\frac{x-5}{x+2}
amplitude of-3sin(4x)
amplitude\:-3\sin(4x)
domain of f(x)= 6/(x-5)
domain\:f(x)=\frac{6}{x-5}
domain of f(x)=(12x+35)/(x(x+7))
domain\:f(x)=\frac{12x+35}{x(x+7)}
domain of f(x)= 7/(x^2-16)
domain\:f(x)=\frac{7}{x^{2}-16}
asymptotes of f(x)=tan(x-pi/2)+1
asymptotes\:f(x)=\tan(x-\frac{π}{2})+1
inverse of 1/(x+5)
inverse\:\frac{1}{x+5}
line (3,3),(4,0)
line\:(3,3),(4,0)
domain of f(x)=sqrt(16-x^2)-sqrt(x+3)
domain\:f(x)=\sqrt{16-x^{2}}-\sqrt{x+3}
domain of f(x)=2-sqrt(-4-3x)
domain\:f(x)=2-\sqrt{-4-3x}
range of arccos(x-1)+pi/2
range\:\arccos(x-1)+\frac{π}{2}
extreme f(x)=x^4-8x^3+7
extreme\:f(x)=x^{4}-8x^{3}+7
intercepts of f(x)=2x+3y=-12
intercepts\:f(x)=2x+3y=-12
domain of f(x)= 1/(1+x)
domain\:f(x)=\frac{1}{1+x}
f(x)=-x^2+4x-3
f(x)=-x^{2}+4x-3
domain of y= x/(6x+25)
domain\:y=\frac{x}{6x+25}
inverse of f(x)=2+1/3 (x-5)^2
inverse\:f(x)=2+\frac{1}{3}(x-5)^{2}
monotone-4x^2+50x+120
monotone\:-4x^{2}+50x+120
critical y=e^{-x^2}+1
critical\:y=e^{-x^{2}}+1
inverse of 4^{3x-1}
inverse\:4^{3x-1}
range of f(x)=x^2+6x+5
range\:f(x)=x^{2}+6x+5
amplitude of 1/2 cos(2x)
amplitude\:\frac{1}{2}\cos(2x)
intercepts of (x^2-2x-24)/(x-8)
intercepts\:\frac{x^{2}-2x-24}{x-8}
slope ofintercept-x+y=14
slopeintercept\:-x+y=14
domain of f(x)=2sin(4x)
domain\:f(x)=2\sin(4x)
domain of f(x)=log_{3}(x-8)
domain\:f(x)=\log_{3}(x-8)
domain of f(x)=(x+1)/(sqrt(x-2))
domain\:f(x)=\frac{x+1}{\sqrt{x-2}}
domain of-(13)/((6+t)^2)
domain\:-\frac{13}{(6+t)^{2}}
parity f(x)=sqrt(x/(sin(x)))
parity\:f(x)=\sqrt{\frac{x}{\sin(x)}}
extreme f(x)=25-x^2
extreme\:f(x)=25-x^{2}
domain of cos(x)-3
domain\:\cos(x)-3
range of sqrt(x+2)
range\:\sqrt{x+2}
intercepts of f(x)=-2(x+2)^2+3
intercepts\:f(x)=-2(x+2)^{2}+3
inverse of f(x)=2+x
inverse\:f(x)=2+x
symmetry xy=4
symmetry\:xy=4
intercepts of 1/(x-2)
intercepts\:\frac{1}{x-2}
periodicity of f(x)=2+tan(x)
periodicity\:f(x)=2+\tan(x)
domain of 1/(sqrt(x^4-50x^2+49))
domain\:\frac{1}{\sqrt{x^{4}-50x^{2}+49}}
domain of (2x)/(x+5)
domain\:\frac{2x}{x+5}
asymptotes of f(x)=e^{x-1}
asymptotes\:f(x)=e^{x-1}
inverse of f(x)= 1/3 (x+5)
inverse\:f(x)=\frac{1}{3}(x+5)
midpoint (-3,0),(5,-5)
midpoint\:(-3,0),(5,-5)
amplitude of y=-3sin(2x)-4
amplitude\:y=-3\sin(2x)-4
simplify (5.6)(5.1)
simplify\:(5.6)(5.1)
inverse of y=ln(x-1)
inverse\:y=\ln(x-1)
parallel y=-7,(7,5)
parallel\:y=-7,(7,5)
intercepts of y=(6x)/(x^2+1)
intercepts\:y=\frac{6x}{x^{2}+1}
distance (7,6),(0,2)
distance\:(7,6),(0,2)
range of f(x)=sqrt(x^2-4)
range\:f(x)=\sqrt{x^{2}-4}
amplitude of 2/3 cos(3/2 x)
amplitude\:\frac{2}{3}\cos(\frac{3}{2}x)
range of (x^2+1)/x
range\:\frac{x^{2}+1}{x}
range of f(x)=2^{3-x}
range\:f(x)=2^{3-x}
domain of (sqrt(x+2))/(x-1)
domain\:\frac{\sqrt{x+2}}{x-1}
domain of f(x)=sqrt((3+x)/(9-x))
domain\:f(x)=\sqrt{\frac{3+x}{9-x}}
inverse of f(x)= 5/(11x)+10
inverse\:f(x)=\frac{5}{11x}+10
domain of 5tan(5x)
domain\:5\tan(5x)
domain of f(x)=(1-3t)/(4+t)
domain\:f(x)=\frac{1-3t}{4+t}
inverse of f(x)=-6(x-2)
inverse\:f(x)=-6(x-2)
line (5,4),(0,0)
line\:(5,4),(0,0)
inverse of f(x)=log_{3}(x+2)
inverse\:f(x)=\log_{3}(x+2)
asymptotes of f(x)=((2x^2-6x-8))/(x-5)
asymptotes\:f(x)=\frac{(2x^{2}-6x-8)}{x-5}
intercepts of f(x)=-1/4 x+8
intercepts\:f(x)=-\frac{1}{4}x+8
asymptotes of f(x)= 1/(3^{x-2)}
asymptotes\:f(x)=\frac{1}{3^{x-2}}
inverse of (x^2-4)/(7x^2)
inverse\:\frac{x^{2}-4}{7x^{2}}
intercepts of f(x)=(x^2-9)/(x^2)
intercepts\:f(x)=\frac{x^{2}-9}{x^{2}}
domain of 6^x-4
domain\:6^{x}-4
amplitude of tan(2x)
amplitude\:\tan(2x)
domain of f(x)=sqrt(3/(x+2))
domain\:f(x)=\sqrt{\frac{3}{x+2}}
inverse of f(x)=(8x+9)/(5x-8)
inverse\:f(x)=\frac{8x+9}{5x-8}
inverse of f(x)=sin(x)
inverse\:f(x)=\sin(x)
inverse of f(x)=4-x^3
inverse\:f(x)=4-x^{3}
domain of f(x)=sqrt(x^2+3x+7)
domain\:f(x)=\sqrt{x^{2}+3x+7}
critical f(x)=1-8x
critical\:f(x)=1-8x
slope of y= 2/3 x-4
slope\:y=\frac{2}{3}x-4
range of 8x+14
range\:8x+14
range of 3^{x-2}-7
range\:3^{x-2}-7
domain of (9(x+11))/(11x)
domain\:\frac{9(x+11)}{11x}
line m=-2,(0,-2)
line\:m=-2,(0,-2)
symmetry (x^2(x+1))/(x+1)
symmetry\:\frac{x^{2}(x+1)}{x+1}
extreme f(x)=3x^3-36x-2
extreme\:f(x)=3x^{3}-36x-2
1
..
174
175
176
177
178
..
1324