解答
cos(x)sin(x)=1+cot2(x)sin(x)
解答
x∈R无解
求解步骤
cos(x)sin(x)=1+cot2(x)sin(x)
两边减去 1+cot2(x)sin(x)cos(x)sin(x)−1+cot2(x)sin(x)=0
化简 cos(x)sin(x)−1+cot2(x)sin(x):cos(x)(cot2(x)+1)sin(x)(cot2(x)+1)−sin(x)cos(x)
cos(x)sin(x)−1+cot2(x)sin(x)
cos(x),1+cot2(x)的最小公倍数:cos(x)(cot2(x)+1)
cos(x),1+cot2(x)
最小公倍数 (LCM)
计算出由出现在 cos(x) 或 1+cot2(x)中的因子组成的表达式=cos(x)(cot2(x)+1)
根据最小公倍数调整分式
将每个分子乘以其分母转变为最小公倍数所要乘以的同一数值 cos(x)(cot2(x)+1)
对于 cos(x)sin(x):将分母和分子乘以 cot2(x)+1cos(x)sin(x)=cos(x)(cot2(x)+1)sin(x)(cot2(x)+1)
对于 1+cot2(x)sin(x):将分母和分子乘以 cos(x)1+cot2(x)sin(x)=(1+cot2(x))cos(x)sin(x)cos(x)
=cos(x)(cot2(x)+1)sin(x)(cot2(x)+1)−(1+cot2(x))cos(x)sin(x)cos(x)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(x)(cot2(x)+1)sin(x)(cot2(x)+1)−sin(x)cos(x)
cos(x)(cot2(x)+1)sin(x)(cot2(x)+1)−sin(x)cos(x)=0
g(x)f(x)=0⇒f(x)=0sin(x)(cot2(x)+1)−sin(x)cos(x)=0
使用三角恒等式改写
(1+cot2(x))sin(x)−cos(x)sin(x)
使用基本三角恒等式: cot(x)=sin(x)cos(x)=(1+(sin(x)cos(x))2)sin(x)−cos(x)sin(x)
使用指数法则: (ba)c=bcac=sin(x)(1+sin2(x)cos2(x))−cos(x)sin(x)
(1+sin2(x)cos2(x))sin(x)−cos(x)sin(x)=0
分解 (1+sin2(x)cos2(x))sin(x)−cos(x)sin(x):sin(x)(1+sin2(x)cos2(x)−cos(x))
(1+sin2(x)cos2(x))sin(x)−cos(x)sin(x)
因式分解出通项 sin(x)=sin(x)(1+sin2(x)cos2(x)−cos(x))
sin(x)(1+sin2(x)cos2(x)−cos(x))=0
分别求解每个部分sin(x)=0or1+sin2(x)cos2(x)−cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
sin(x)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
解 x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
1+sin2(x)cos2(x)−cos(x)=0:无解
1+sin2(x)cos2(x)−cos(x)=0
化简 1+sin2(x)cos2(x)−cos(x):sin2(x)sin2(x)+cos2(x)−sin2(x)cos(x)
1+sin2(x)cos2(x)−cos(x)
将项转换为分式: 1=sin2(x)1sin2(x),cos(x)=sin2(x)cos(x)sin2(x)=sin2(x)1⋅sin2(x)+sin2(x)cos2(x)−sin2(x)cos(x)sin2(x)
因为分母相等,所以合并分式: ca±cb=ca±b=sin2(x)1⋅sin2(x)+cos2(x)−cos(x)sin2(x)
乘以:1⋅sin2(x)=sin2(x)=sin2(x)sin2(x)+cos2(x)−sin2(x)cos(x)
sin2(x)sin2(x)+cos2(x)−sin2(x)cos(x)=0
g(x)f(x)=0⇒f(x)=0sin2(x)+cos2(x)−sin2(x)cos(x)=0
使用三角恒等式改写
cos2(x)+sin2(x)−cos(x)sin2(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos2(x)+1−cos2(x)−cos(x)(1−cos2(x))
化简 cos2(x)+1−cos2(x)−cos(x)(1−cos2(x)):−cos(x)+cos3(x)+1
cos2(x)+1−cos2(x)−cos(x)(1−cos2(x))
乘开 −cos(x)(1−cos2(x)):−cos(x)+cos3(x)
−cos(x)(1−cos2(x))
使用分配律: a(b−c)=ab−aca=−cos(x),b=1,c=cos2(x)=−cos(x)⋅1−(−cos(x))cos2(x)
使用加减运算法则−(−a)=a=−1⋅cos(x)+cos2(x)cos(x)
化简 −1⋅cos(x)+cos2(x)cos(x):−cos(x)+cos3(x)
−1⋅cos(x)+cos2(x)cos(x)
1⋅cos(x)=cos(x)
1⋅cos(x)
乘以:1⋅cos(x)=cos(x)=cos(x)
cos2(x)cos(x)=cos3(x)
cos2(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=cos2+1(x)
数字相加:2+1=3=cos3(x)
=−cos(x)+cos3(x)
=−cos(x)+cos3(x)
=cos2(x)+1−cos2(x)−cos(x)+cos3(x)
化简 cos2(x)+1−cos2(x)−cos(x)+cos3(x):−cos(x)+cos3(x)+1
cos2(x)+1−cos2(x)−cos(x)+cos3(x)
对同类项分组=cos2(x)−cos2(x)−cos(x)+cos3(x)+1
同类项相加:cos2(x)−cos2(x)=0=−cos(x)+cos3(x)+1
=−cos(x)+cos3(x)+1
=−cos(x)+cos3(x)+1
1−cos(x)+cos3(x)=0
用替代法求解
1−cos(x)+cos3(x)=0
令:cos(x)=u1−u+u3=0
1−u+u3=0:u≈−1.32471…
1−u+u3=0
改写成标准形式 anxn+…+a1x+a0=0u3−u+1=0
使用牛顿-拉弗森方法找到 u3−u+1=0 的一个解:u≈−1.32471…
u3−u+1=0
牛顿-拉弗森近似法定义
f(u)=u3−u+1
找到 f′(u):3u2−1
dud(u3−u+1)
使用微分加减法定则: (f±g)′=f′±g′=dud(u3)−dudu+dud(1)
dud(u3)=3u2
dud(u3)
使用幂法则: dxd(xa)=a⋅xa−1=3u3−1
化简=3u2
dudu=1
dudu
使用常见微分定则: dudu=1=1
dud(1)=0
dud(1)
常数微分: dxd(a)=0=0
=3u2−1+0
化简=3u2−1
令 u0=−1计算 un+1 至 Δun+1<0.000001
u1=−1.5:Δu1=0.5
f(u0)=(−1)3−(−1)+1=1f′(u0)=3(−1)2−1=2u1=−1.5
Δu1=∣−1.5−(−1)∣=0.5Δu1=0.5
u2=−1.34782…:Δu2=0.15217…
f(u1)=(−1.5)3−(−1.5)+1=−0.875f′(u1)=3(−1.5)2−1=5.75u2=−1.34782…
Δu2=∣−1.34782…−(−1.5)∣=0.15217…Δu2=0.15217…
u3=−1.32520…:Δu3=0.02262…
f(u2)=(−1.34782…)3−(−1.34782…)+1=−0.10068…f′(u2)=3(−1.34782…)2−1=4.44990…u3=−1.32520…
Δu3=∣−1.32520…−(−1.34782…)∣=0.02262…Δu3=0.02262…
u4=−1.32471…:Δu4=0.00048…
f(u3)=(−1.32520…)3−(−1.32520…)+1=−0.00205…f′(u3)=3(−1.32520…)2−1=4.26846…u4=−1.32471…
Δu4=∣−1.32471…−(−1.32520…)∣=0.00048…Δu4=0.00048…
u5=−1.32471…:Δu5=2.16754E−7
f(u4)=(−1.32471…)3−(−1.32471…)+1=−9.24378E−7f′(u4)=3(−1.32471…)2−1=4.26463…u5=−1.32471…
Δu5=∣−1.32471…−(−1.32471…)∣=2.16754E−7Δu5=2.16754E−7
u≈−1.32471…
使用长除法 Equation0:u+1.32471…u3−u+1=u2−1.32471…u+0.75487…
u2−1.32471…u+0.75487…≈0
使用牛顿-拉弗森方法找到 u2−1.32471…u+0.75487…=0 的一个解:u∈R无解
u2−1.32471…u+0.75487…=0
牛顿-拉弗森近似法定义
f(u)=u2−1.32471…u+0.75487…
找到 f′(u):2u−1.32471…
dud(u2−1.32471…u+0.75487…)
使用微分加减法定则: (f±g)′=f′±g′=dud(u2)−dud(1.32471…u)+dud(0.75487…)
dud(u2)=2u
dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=2u2−1
化简=2u
dud(1.32471…u)=1.32471…
dud(1.32471…u)
将常数提出: (a⋅f)′=a⋅f′=1.32471…dudu
使用常见微分定则: dudu=1=1.32471…⋅1
化简=1.32471…
dud(0.75487…)=0
dud(0.75487…)
常数微分: dxd(a)=0=0
=2u−1.32471…+0
化简=2u−1.32471…
令 u0=1计算 un+1 至 Δun+1<0.000001
u1=0.36299…:Δu1=0.63700…
f(u0)=12−1.32471…⋅1+0.75487…=0.43015…f′(u0)=2⋅1−1.32471…=0.67528…u1=0.36299…
Δu1=∣0.36299…−1∣=0.63700…Δu1=0.63700…
u2=1.04072…:Δu2=0.67772…
f(u1)=0.36299…2−1.32471…⋅0.36299…+0.75487…=0.40577…f′(u1)=2⋅0.36299…−1.32471…=−0.59873…u2=1.04072…
Δu2=∣1.04072…−0.36299…∣=0.67772…Δu2=0.67772…
u3=0.43374…:Δu3=0.60697…
f(u2)=1.04072…2−1.32471…⋅1.04072…+0.75487…=0.45931…f′(u2)=2⋅1.04072…−1.32471…=0.75672…u3=0.43374…
Δu3=∣0.43374…−1.04072…∣=0.60697…Δu3=0.60697…
u4=1.23950…:Δu4=0.80576…
f(u3)=0.43374…2−1.32471…⋅0.43374…+0.75487…=0.36842…f′(u3)=2⋅0.43374…−1.32471…=−0.45723…u4=1.23950…
Δu4=∣1.23950…−0.43374…∣=0.80576…Δu4=0.80576…
u5=0.67703…:Δu5=0.56247…
f(u4)=1.23950…2−1.32471…⋅1.23950…+0.75487…=0.64925…f′(u4)=2⋅1.23950…−1.32471…=1.15429…u5=0.67703…
Δu5=∣0.67703…−1.23950…∣=0.56247…Δu5=0.56247…
u6=−10.09982…:Δu6=10.77686…
f(u5)=0.67703…2−1.32471…⋅0.67703…+0.75487…=0.31637…f′(u5)=2⋅0.67703…−1.32471…=0.02935…u6=−10.09982…
Δu6=∣−10.09982…−0.67703…∣=10.77686…Δu6=10.77686…
u7=−4.70404…:Δu7=5.39578…
f(u6)=(−10.09982…)2−1.32471…(−10.09982…)+0.75487…=116.14080…f′(u6)=2(−10.09982…)−1.32471…=−21.52437…u7=−4.70404…
Δu7=∣−4.70404…−(−10.09982…)∣=5.39578…Δu7=5.39578…
u8=−1.99138…:Δu8=2.71265…
f(u7)=(−4.70404…)2−1.32471…(−4.70404…)+0.75487…=29.11445…f′(u7)=2(−4.70404…)−1.32471…=−10.73280…u8=−1.99138…
Δu8=∣−1.99138…−(−4.70404…)∣=2.71265…Δu8=2.71265…
u9=−0.60494…:Δu9=1.38644…
f(u8)=(−1.99138…)2−1.32471…(−1.99138…)+0.75487…=7.35852…f′(u8)=2(−1.99138…)−1.32471…=−5.30749…u9=−0.60494…
Δu9=∣−0.60494…−(−1.99138…)∣=1.38644…Δu9=1.38644…
u10=0.15344…:Δu10=0.75838…
f(u9)=(−0.60494…)2−1.32471…(−0.60494…)+0.75487…=1.92221…f′(u9)=2(−0.60494…)−1.32471…=−2.53460…u10=0.15344…
Δu10=∣0.15344…−(−0.60494…)∣=0.75838…Δu10=0.75838…
u11=0.71852…:Δu11=0.56507…
f(u10)=0.15344…2−1.32471…⋅0.15344…+0.75487…=0.57515…f′(u10)=2⋅0.15344…−1.32471…=−1.01783…u11=0.71852…
Δu11=∣0.71852…−0.15344…∣=0.56507…Δu11=0.56507…
u12=−2.12427…:Δu12=2.84279…
f(u11)=0.71852…2−1.32471…⋅0.71852…+0.75487…=0.31931…f′(u11)=2⋅0.71852…−1.32471…=0.11232…u12=−2.12427…
Δu12=∣−2.12427…−0.71852…∣=2.84279…Δu12=2.84279…
无法得出解
解是u≈−1.32471…
u=cos(x)代回cos(x)≈−1.32471…
cos(x)≈−1.32471…
cos(x)=−1.32471…:无解
cos(x)=−1.32471…
−1≤cos(x)≤1无解
合并所有解无解
合并所有解x=2πn,x=π+2πn
因为方程对以下值无定义:2πn,π+2πnx∈R无解