解答
4cos3(x)−3cos(x)=−0.7071
解答
x=1.30900…+2πn,x=2π−1.30900…+2πn,x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.87979…+2πn,x=−2.87979…+2πn
+1
度数
x=75.00018…∘+360∘n,x=284.99981…∘+360∘n,x=44.99981…∘+360∘n,x=315.00018…∘+360∘n,x=164.99981…∘+360∘n,x=−164.99981…∘+360∘n求解步骤
4cos3(x)−3cos(x)=−0.7071
用替代法求解
4cos3(x)−3cos(x)=−0.7071
令:cos(x)=u4u3−3u=−0.7071
4u3−3u=−0.7071:u≈0.25881…,u≈0.70710…,u≈−0.96592…
4u3−3u=−0.7071
将 0.7071para o lado esquerdo
4u3−3u=−0.7071
两边加上 0.70714u3−3u+0.7071=−0.7071+0.7071
化简4u3−3u+0.7071=0
4u3−3u+0.7071=0
使用牛顿-拉弗森方法找到 4u3−3u+0.7071=0 的一个解:u≈0.25881…
4u3−3u+0.7071=0
牛顿-拉弗森近似法定义
f(u)=4u3−3u+0.7071
找到 f′(u):12u2−3
dud(4u3−3u+0.7071)
使用微分加减法定则: (f±g)′=f′±g′=dud(4u3)−dud(3u)+dud(0.7071)
dud(4u3)=12u2
dud(4u3)
将常数提出: (a⋅f)′=a⋅f′=4dud(u3)
使用幂法则: dxd(xa)=a⋅xa−1=4⋅3u3−1
化简=12u2
dud(3u)=3
dud(3u)
将常数提出: (a⋅f)′=a⋅f′=3dudu
使用常见微分定则: dudu=1=3⋅1
化简=3
dud(0.7071)=0
dud(0.7071)
常数微分: dxd(a)=0=0
=12u2−3+0
化简=12u2−3
令 u0=0计算 un+1 至 Δun+1<0.000001
u1=0.2357:Δu1=0.2357
f(u0)=4⋅03−3⋅0+0.7071=0.7071f′(u0)=12⋅02−3=−3u1=0.2357
Δu1=∣0.2357−0∣=0.2357Δu1=0.2357
u2=0.25814…:Δu2=0.02244…
f(u1)=4⋅0.23573−3⋅0.2357+0.7071=0.05237…f′(u1)=12⋅0.23572−3=−2.33334612u2=0.25814…
Δu2=∣0.25814…−0.2357∣=0.02244…Δu2=0.02244…
u3=0.25881…:Δu3=0.00066…
f(u2)=4⋅0.25814…3−3⋅0.25814…+0.7071=0.00147…f′(u2)=12⋅0.25814…2−3=−2.20032…u3=0.25881…
Δu3=∣0.25881…−0.25814…∣=0.00066…Δu3=0.00066…
u4=0.25881…:Δu4=6.30447E−7
f(u3)=4⋅0.25881…3−3⋅0.25881…+0.7071=1.38457E−6f′(u3)=12⋅0.25881…2−3=−2.19617…u4=0.25881…
Δu4=∣0.25881…−0.25881…∣=6.30447E−7Δu4=6.30447E−7
u≈0.25881…
使用长除法 Equation0:u−0.25881…4u3−3u+0.7071=4u2+1.03526…u−2.73205…
4u2+1.03526…u−2.73205…≈0
使用牛顿-拉弗森方法找到 4u2+1.03526…u−2.73205…=0 的一个解:u≈0.70710…
4u2+1.03526…u−2.73205…=0
牛顿-拉弗森近似法定义
f(u)=4u2+1.03526…u−2.73205…
找到 f′(u):8u+1.03526…
dud(4u2+1.03526…u−2.73205…)
使用微分加减法定则: (f±g)′=f′±g′=dud(4u2)+dud(1.03526…u)−dud(2.73205…)
dud(4u2)=8u
dud(4u2)
将常数提出: (a⋅f)′=a⋅f′=4dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=4⋅2u2−1
化简=8u
dud(1.03526…u)=1.03526…
dud(1.03526…u)
将常数提出: (a⋅f)′=a⋅f′=1.03526…dudu
使用常见微分定则: dudu=1=1.03526…⋅1
化简=1.03526…
dud(2.73205…)=0
dud(2.73205…)
常数微分: dxd(a)=0=0
=8u+1.03526…−0
化简=8u+1.03526…
令 u0=3计算 un+1 至 Δun+1<0.000001
u1=1.54710…:Δu1=1.45289…
f(u0)=4⋅32+1.03526…⋅3−2.73205…=36.37373…f′(u0)=8⋅3+1.03526…=25.03526…u1=1.54710…
Δu1=∣1.54710…−3∣=1.45289…Δu1=1.45289…
u2=0.91754…:Δu2=0.62955…
f(u1)=4⋅1.54710…2+1.03526…⋅1.54710…−2.73205…=8.44367…f′(u1)=8⋅1.54710…+1.03526…=13.41206…u2=0.91754…
Δu2=∣0.91754…−1.54710…∣=0.62955…Δu2=0.62955…
u3=0.72825…:Δu3=0.18928…
f(u2)=4⋅0.91754…2+1.03526…⋅0.91754…−2.73205…=1.58537…f′(u2)=8⋅0.91754…+1.03526…=8.37559…u3=0.72825…
Δu3=∣0.72825…−0.91754…∣=0.18928…Δu3=0.18928…
u4=0.70736…:Δu4=0.02088…
f(u3)=4⋅0.72825…2+1.03526…⋅0.72825…−2.73205…=0.14331…f′(u3)=8⋅0.72825…+1.03526…=6.86132…u4=0.70736…
Δu4=∣0.70736…−0.72825…∣=0.02088…Δu4=0.02088…
u5=0.70710…:Δu5=0.00026…
f(u4)=4⋅0.70736…2+1.03526…⋅0.70736…−2.73205…=0.00174…f′(u4)=8⋅0.70736…+1.03526…=6.69422…u5=0.70710…
Δu5=∣0.70710…−0.70736…∣=0.00026…Δu5=0.00026…
u6=0.70710…:Δu6=4.06209E−8
f(u5)=4⋅0.70710…2+1.03526…⋅0.70710…−2.73205…=2.71841E−7f′(u5)=8⋅0.70710…+1.03526…=6.69213…u6=0.70710…
Δu6=∣0.70710…−0.70710…∣=4.06209E−8Δu6=4.06209E−8
u≈0.70710…
使用长除法 Equation0:u−0.70710…4u2+1.03526…u−2.73205…=4u+3.86369…
4u+3.86369…≈0
u≈−0.96592…
解为u≈0.25881…,u≈0.70710…,u≈−0.96592…
u=cos(x)代回cos(x)≈0.25881…,cos(x)≈0.70710…,cos(x)≈−0.96592…
cos(x)≈0.25881…,cos(x)≈0.70710…,cos(x)≈−0.96592…
cos(x)=0.25881…:x=arccos(0.25881…)+2πn,x=2π−arccos(0.25881…)+2πn
cos(x)=0.25881…
使用反三角函数性质
cos(x)=0.25881…
cos(x)=0.25881…的通解cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.25881…)+2πn,x=2π−arccos(0.25881…)+2πn
x=arccos(0.25881…)+2πn,x=2π−arccos(0.25881…)+2πn
cos(x)=0.70710…:x=arccos(0.70710…)+2πn,x=2π−arccos(0.70710…)+2πn
cos(x)=0.70710…
使用反三角函数性质
cos(x)=0.70710…
cos(x)=0.70710…的通解cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.70710…)+2πn,x=2π−arccos(0.70710…)+2πn
x=arccos(0.70710…)+2πn,x=2π−arccos(0.70710…)+2πn
cos(x)=−0.96592…:x=arccos(−0.96592…)+2πn,x=−arccos(−0.96592…)+2πn
cos(x)=−0.96592…
使用反三角函数性质
cos(x)=−0.96592…
cos(x)=−0.96592…的通解cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.96592…)+2πn,x=−arccos(−0.96592…)+2πn
x=arccos(−0.96592…)+2πn,x=−arccos(−0.96592…)+2πn
合并所有解x=arccos(0.25881…)+2πn,x=2π−arccos(0.25881…)+2πn,x=arccos(0.70710…)+2πn,x=2π−arccos(0.70710…)+2πn,x=arccos(−0.96592…)+2πn,x=−arccos(−0.96592…)+2πn
以小数形式表示解x=1.30900…+2πn,x=2π−1.30900…+2πn,x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.87979…+2πn,x=−2.87979…+2πn