Solution
sin22(x)=4sin2(x)cos2(x)
Solution
x=2πn,x=π+2πn,x=1.25989…+2πn,x=π−1.25989…+2πn,x=−1.25989…+2πn,x=π+1.25989…+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=72.18663…∘+360∘n,x=107.81336…∘+360∘n,x=−72.18663…∘+360∘n,x=252.18663…∘+360∘nSolution steps
sin22(x)=4sin2(x)cos2(x)
Subtract 4sin2(x)cos2(x) from both sidessin22(x)−4sin2(x)cos2(x)=0
Rewrite using trig identities
sin22(x)−4cos2(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=sin22(x)−4(1−sin2(x))sin2(x)
sin22(x)−(1−sin2(x))⋅4sin2(x)=0
Solve by substitution
sin22(x)−(1−sin2(x))⋅4sin2(x)=0
Let: sin(x)=uu22−(1−u2)⋅4u2=0
u22−(1−u2)⋅4u2=0:u=0,u=0.90641…,u=−0.90641…
u22−(1−u2)⋅4u2=0
Expand u22−(1−u2)⋅4u2:u22−4u2+4u4
u22−(1−u2)⋅4u2
=u22−4u2(1−u2)
Expand −4u2(1−u2):−4u2+4u4
−4u2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−4u2,b=1,c=u2=−4u2⋅1−(−4u2)u2
Apply minus-plus rules−(−a)=a=−4⋅1⋅u2+4u2u2
Simplify −4⋅1⋅u2+4u2u2:−4u2+4u4
−4⋅1⋅u2+4u2u2
4⋅1⋅u2=4u2
4⋅1⋅u2
Multiply the numbers: 4⋅1=4=4u2
4u2u2=4u4
4u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=4u2+2
Add the numbers: 2+2=4=4u4
=−4u2+4u4
=−4u2+4u4
=u22−4u2+4u4
u22−4u2+4u4=0
Write in the standard form anxn+…+a1x+a0=0u22+4u4−4u2=0
Rewrite the equation with v=u2,v2=u4 and v11=u22v11+4v2−4v=0
Solve v11+4v2−4v=0:v=0,v≈0.90641…,v≈−1.24548…
v11+4v2−4v=0
Factor v11+4v2−4v:v(v10+4v−4)
v11+4v2−4v
Apply exponent rule: ab+c=abacv2=vv=v10v+4vv−4v
Factor out common term v=v(v10+4v−4)
v(v10+4v−4)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0v=0orv10+4v−4=0
Solve v10+4v−4=0:v≈0.90641…,v≈−1.24548…
v10+4v−4=0
Find one solution for v10+4v−4=0 using Newton-Raphson:v≈0.90641…
v10+4v−4=0
Newton-Raphson Approximation Definition
f(v)=v10+4v−4
Find f′(v):10v9+4
dvd(v10+4v−4)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd(v10)+dvd(4v)−dvd(4)
dvd(v10)=10v9
dvd(v10)
Apply the Power Rule: dxd(xa)=a⋅xa−1=10v10−1
Simplify=10v9
dvd(4v)=4
dvd(4v)
Take the constant out: (a⋅f)′=a⋅f′=4dvdv
Apply the common derivative: dvdv=1=4⋅1
Simplify=4
dvd(4)=0
dvd(4)
Derivative of a constant: dxd(a)=0=0
=10v9+4−0
Simplify=10v9+4
Let v0=1Compute vn+1 until Δvn+1<0.000001
v1=0.92857…:Δv1=0.07142…
f(v0)=110+4⋅1−4=1f′(v0)=10⋅19+4=14v1=0.92857…
Δv1=∣0.92857…−1∣=0.07142…Δv1=0.07142…
v2=0.90766…:Δv2=0.02090…
f(v1)=0.92857…10+4⋅0.92857…−4=0.19088…f′(v1)=10⋅0.92857…9+4=9.13260…v2=0.90766…
Δv2=∣0.90766…−0.92857…∣=0.02090…Δv2=0.02090…
v3=0.90641…:Δv3=0.00125…
f(v2)=0.90766…10+4⋅0.90766…−4=0.01023…f′(v2)=10⋅0.90766…9+4=8.18168…v3=0.90641…
Δv3=∣0.90641…−0.90766…∣=0.00125…Δv3=0.00125…
v4=0.90641…:Δv4=3.97918E−6
f(v3)=0.90641…10+4⋅0.90641…−4=0.00003…f′(v3)=10⋅0.90641…9+4=8.13008…v4=0.90641…
Δv4=∣0.90641…−0.90641…∣=3.97918E−6Δv4=3.97918E−6
v5=0.90641…:Δv5=3.99335E−11
f(v4)=0.90641…10+4⋅0.90641…−4=3.24656E−10f′(v4)=10⋅0.90641…9+4=8.12992…v5=0.90641…
Δv5=∣0.90641…−0.90641…∣=3.99335E−11Δv5=3.99335E−11
v≈0.90641…
Apply long division:v−0.90641…v10+4v−4=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…≈0
Find one solution for v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0 using Newton-Raphson:v≈−1.24548…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0
Newton-Raphson Approximation Definition
f(v)=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
Find f′(v):9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
dvd(v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd(v9)+dvd(0.90641…v8)+dvd(0.82158…v7)+dvd(0.74469…v6)+dvd(0.67500…v5)+dvd(0.61183…v4)+dvd(0.55457…v3)+dvd(0.50267…v2)+dvd(0.45563…v)+dvd(4.41299…)
dvd(v9)=9v8
dvd(v9)
Apply the Power Rule: dxd(xa)=a⋅xa−1=9v9−1
Simplify=9v8
dvd(0.90641…v8)=7.25131…v7
dvd(0.90641…v8)
Take the constant out: (a⋅f)′=a⋅f′=0.90641…dvd(v8)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.90641…⋅8v8−1
Simplify=7.25131…v7
dvd(0.82158…v7)=5.75111…v6
dvd(0.82158…v7)
Take the constant out: (a⋅f)′=a⋅f′=0.82158…dvd(v7)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.82158…⋅7v7−1
Simplify=5.75111…v6
dvd(0.74469…v6)=4.46819…v5
dvd(0.74469…v6)
Take the constant out: (a⋅f)′=a⋅f′=0.74469…dvd(v6)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.74469…⋅6v6−1
Simplify=4.46819…v5
dvd(0.67500…v5)=3.37502…v4
dvd(0.67500…v5)
Take the constant out: (a⋅f)′=a⋅f′=0.67500…dvd(v5)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.67500…⋅5v5−1
Simplify=3.37502…v4
dvd(0.61183…v4)=2.44733…v3
dvd(0.61183…v4)
Take the constant out: (a⋅f)′=a⋅f′=0.61183…dvd(v4)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.61183…⋅4v4−1
Simplify=2.44733…v3
dvd(0.55457…v3)=1.66372…v2
dvd(0.55457…v3)
Take the constant out: (a⋅f)′=a⋅f′=0.55457…dvd(v3)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.55457…⋅3v3−1
Simplify=1.66372…v2
dvd(0.50267…v2)=1.00535…v
dvd(0.50267…v2)
Take the constant out: (a⋅f)′=a⋅f′=0.50267…dvd(v2)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.50267…⋅2v2−1
Simplify=1.00535…v
dvd(0.45563…v)=0.45563…
dvd(0.45563…v)
Take the constant out: (a⋅f)′=a⋅f′=0.45563…dvdv
Apply the common derivative: dvdv=1=0.45563…⋅1
Simplify=0.45563…
dvd(4.41299…)=0
dvd(4.41299…)
Derivative of a constant: dxd(a)=0=0
=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…+0
Simplify=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
Let v0=−5Compute vn+1 until Δvn+1<0.000001
v1=−4.45375…:Δv1=0.54624…
f(v0)=(−5)9+0.90641…(−5)8+0.82158…(−5)7+0.74469…(−5)6+0.67500…(−5)5+0.61183…(−5)4+0.55457…(−5)3+0.50267…(−5)2+0.45563…(−5)+4.41299…=−1653389.03665…f′(v0)=9(−5)8+7.25131…(−5)7+5.75111…(−5)6+4.46819…(−5)5+3.37502…(−5)4+2.44733…(−5)3+1.66372…(−5)2+1.00535…(−5)+0.45563…=3026854.43549…v1=−4.45375…
Δv1=∣−4.45375…−(−5)∣=0.54624…Δv1=0.54624…
v2=−3.96802…:Δv2=0.48573…
f(v1)=(−4.45375…)9+0.90641…(−4.45375…)8+0.82158…(−4.45375…)7+0.74469…(−4.45375…)6+0.67500…(−4.45375…)5+0.61183…(−4.45375…)4+0.55457…(−4.45375…)3+0.50267…(−4.45375…)2+0.45563…(−4.45375…)+4.41299…=−572909.56059…f′(v1)=9(−4.45375…)8+7.25131…(−4.45375…)7+5.75111…(−4.45375…)6+4.46819…(−4.45375…)5+3.37502…(−4.45375…)4+2.44733…(−4.45375…)3+1.66372…(−4.45375…)2+1.00535…(−4.45375…)+0.45563…=1179476.08686…v2=−3.96802…
Δv2=∣−3.96802…−(−4.45375…)∣=0.48573…Δv2=0.48573…
v3=−3.53606…:Δv3=0.43195…
f(v2)=(−3.96802…)9+0.90641…(−3.96802…)8+0.82158…(−3.96802…)7+0.74469…(−3.96802…)6+0.67500…(−3.96802…)5+0.61183…(−3.96802…)4+0.55457…(−3.96802…)3+0.50267…(−3.96802…)2+0.45563…(−3.96802…)+4.41299…=−198524.05883…f′(v2)=9(−3.96802…)8+7.25131…(−3.96802…)7+5.75111…(−3.96802…)6+4.46819…(−3.96802…)5+3.37502…(−3.96802…)4+2.44733…(−3.96802…)3+1.66372…(−3.96802…)2+1.00535…(−3.96802…)+0.45563…=459591.06090…v3=−3.53606…
Δv3=∣−3.53606…−(−3.96802…)∣=0.43195…Δv3=0.43195…
v4=−3.15190…:Δv4=0.38416…
f(v3)=(−3.53606…)9+0.90641…(−3.53606…)8+0.82158…(−3.53606…)7+0.74469…(−3.53606…)6+0.67500…(−3.53606…)5+0.61183…(−3.53606…)4+0.55457…(−3.53606…)3+0.50267…(−3.53606…)2+0.45563…(−3.53606…)+4.41299…=−68794.93716…f′(v3)=9(−3.53606…)8+7.25131…(−3.53606…)7+5.75111…(−3.53606…)6+4.46819…(−3.53606…)5+3.37502…(−3.53606…)4+2.44733…(−3.53606…)3+1.66372…(−3.53606…)2+1.00535…(−3.53606…)+0.45563…=179076.94254…v4=−3.15190…
Δv4=∣−3.15190…−(−3.53606…)∣=0.38416…Δv4=0.38416…
v5=−2.81023…:Δv5=0.34167…
f(v4)=(−3.15190…)9+0.90641…(−3.15190…)8+0.82158…(−3.15190…)7+0.74469…(−3.15190…)6+0.67500…(−3.15190…)5+0.61183…(−3.15190…)4+0.55457…(−3.15190…)3+0.50267…(−3.15190…)2+0.45563…(−3.15190…)+4.41299…=−23840.26765…f′(v4)=9(−3.15190…)8+7.25131…(−3.15190…)7+5.75111…(−3.15190…)6+4.46819…(−3.15190…)5+3.37502…(−3.15190…)4+2.44733…(−3.15190…)3+1.66372…(−3.15190…)2+1.00535…(−3.15190…)+0.45563…=69775.21311…v5=−2.81023…
Δv5=∣−2.81023…−(−3.15190…)∣=0.34167…Δv5=0.34167…
v6=−2.50637…:Δv6=0.30385…
f(v5)=(−2.81023…)9+0.90641…(−2.81023…)8+0.82158…(−2.81023…)7+0.74469…(−2.81023…)6+0.67500…(−2.81023…)5+0.61183…(−2.81023…)4+0.55457…(−2.81023…)3+0.50267…(−2.81023…)2+0.45563…(−2.81023…)+4.41299…=−8261.45550…f′(v5)=9(−2.81023…)8+7.25131…(−2.81023…)7+5.75111…(−2.81023…)6+4.46819…(−2.81023…)5+3.37502…(−2.81023…)4+2.44733…(−2.81023…)3+1.66372…(−2.81023…)2+1.00535…(−2.81023…)+0.45563…=27188.45003…v6=−2.50637…
Δv6=∣−2.50637…−(−2.81023…)∣=0.30385…Δv6=0.30385…
v7=−2.23625…:Δv7=0.27011…
f(v6)=(−2.50637…)9+0.90641…(−2.50637…)8+0.82158…(−2.50637…)7+0.74469…(−2.50637…)6+0.67500…(−2.50637…)5+0.61183…(−2.50637…)4+0.55457…(−2.50637…)3+0.50267…(−2.50637…)2+0.45563…(−2.50637…)+4.41299…=−2862.37457…f′(v6)=9(−2.50637…)8+7.25131…(−2.50637…)7+5.75111…(−2.50637…)6+4.46819…(−2.50637…)5+3.37502…(−2.50637…)4+2.44733…(−2.50637…)3+1.66372…(−2.50637…)2+1.00535…(−2.50637…)+0.45563…=10596.88514…v7=−2.23625…
Δv7=∣−2.23625…−(−2.50637…)∣=0.27011…Δv7=0.27011…
v8=−1.99650…:Δv8=0.23975…
f(v7)=(−2.23625…)9+0.90641…(−2.23625…)8+0.82158…(−2.23625…)7+0.74469…(−2.23625…)6+0.67500…(−2.23625…)5+0.61183…(−2.23625…)4+0.55457…(−2.23625…)3+0.50267…(−2.23625…)2+0.45563…(−2.23625…)+4.41299…=−991.10859…f′(v7)=9(−2.23625…)8+7.25131…(−2.23625…)7+5.75111…(−2.23625…)6+4.46819…(−2.23625…)5+3.37502…(−2.23625…)4+2.44733…(−2.23625…)3+1.66372…(−2.23625…)2+1.00535…(−2.23625…)+0.45563…=4133.76874…v8=−1.99650…
Δv8=∣−1.99650…−(−2.23625…)∣=0.23975…Δv8=0.23975…
v9=−1.78466…:Δv9=0.21183…
f(v8)=(−1.99650…)9+0.90641…(−1.99650…)8+0.82158…(−1.99650…)7+0.74469…(−1.99650…)6+0.67500…(−1.99650…)5+0.61183…(−1.99650…)4+0.55457…(−1.99650…)3+0.50267…(−1.99650…)2+0.45563…(−1.99650…)+4.41299…=−342.49576…f′(v8)=9(−1.99650…)8+7.25131…(−1.99650…)7+5.75111…(−1.99650…)6+4.46819…(−1.99650…)5+3.37502…(−1.99650…)4+2.44733…(−1.99650…)3+1.66372…(−1.99650…)2+1.00535…(−1.99650…)+0.45563…=1616.80028…v9=−1.78466…
Δv9=∣−1.78466…−(−1.99650…)∣=0.21183…Δv9=0.21183…
v10=−1.60003…:Δv10=0.18463…
f(v9)=(−1.78466…)9+0.90641…(−1.78466…)8+0.82158…(−1.78466…)7+0.74469…(−1.78466…)6+0.67500…(−1.78466…)5+0.61183…(−1.78466…)4+0.55457…(−1.78466…)3+0.50267…(−1.78466…)2+0.45563…(−1.78466…)+4.41299…=−117.65885…f′(v9)=9(−1.78466…)8+7.25131…(−1.78466…)7+5.75111…(−1.78466…)6+4.46819…(−1.78466…)5+3.37502…(−1.78466…)4+2.44733…(−1.78466…)3+1.66372…(−1.78466…)2+1.00535…(−1.78466…)+0.45563…=637.26147…v10=−1.60003…
Δv10=∣−1.60003…−(−1.78466…)∣=0.18463…Δv10=0.18463…
v11=−1.44531…:Δv11=0.15471…
f(v10)=(−1.60003…)9+0.90641…(−1.60003…)8+0.82158…(−1.60003…)7+0.74469…(−1.60003…)6+0.67500…(−1.60003…)5+0.61183…(−1.60003…)4+0.55457…(−1.60003…)3+0.50267…(−1.60003…)2+0.45563…(−1.60003…)+4.41299…=−39.72697…f′(v10)=9(−1.60003…)8+7.25131…(−1.60003…)7+5.75111…(−1.60003…)6+4.46819…(−1.60003…)5+3.37502…(−1.60003…)4+2.44733…(−1.60003…)3+1.66372…(−1.60003…)2+1.00535…(−1.60003…)+0.45563…=256.77560…v11=−1.44531…
Δv11=∣−1.44531…−(−1.60003…)∣=0.15471…Δv11=0.15471…
v12=−1.32926…:Δv12=0.11605…
f(v11)=(−1.44531…)9+0.90641…(−1.44531…)8+0.82158…(−1.44531…)7+0.74469…(−1.44531…)6+0.67500…(−1.44531…)5+0.61183…(−1.44531…)4+0.55457…(−1.44531…)3+0.50267…(−1.44531…)2+0.45563…(−1.44531…)+4.41299…=−12.75482…f′(v11)=9(−1.44531…)8+7.25131…(−1.44531…)7+5.75111…(−1.44531…)6+4.46819…(−1.44531…)5+3.37502…(−1.44531…)4+2.44733…(−1.44531…)3+1.66372…(−1.44531…)2+1.00535…(−1.44531…)+0.45563…=109.90167…v12=−1.32926…
Δv12=∣−1.32926…−(−1.44531…)∣=0.11605…Δv12=0.11605…
v13=−1.26447…:Δv13=0.06478…
f(v12)=(−1.32926…)9+0.90641…(−1.32926…)8+0.82158…(−1.32926…)7+0.74469…(−1.32926…)6+0.67500…(−1.32926…)5+0.61183…(−1.32926…)4+0.55457…(−1.32926…)3+0.50267…(−1.32926…)2+0.45563…(−1.32926…)+4.41299…=−3.53618…f′(v12)=9(−1.32926…)8+7.25131…(−1.32926…)7+5.75111…(−1.32926…)6+4.46819…(−1.32926…)5+3.37502…(−1.32926…)4+2.44733…(−1.32926…)3+1.66372…(−1.32926…)2+1.00535…(−1.32926…)+0.45563…=54.58328…v13=−1.26447…
Δv13=∣−1.26447…−(−1.32926…)∣=0.06478…Δv13=0.06478…
v14=−1.24663…:Δv14=0.01784…
f(v13)=(−1.26447…)9+0.90641…(−1.26447…)8+0.82158…(−1.26447…)7+0.74469…(−1.26447…)6+0.67500…(−1.26447…)5+0.61183…(−1.26447…)4+0.55457…(−1.26447…)3+0.50267…(−1.26447…)2+0.45563…(−1.26447…)+4.41299…=−0.64115…f′(v13)=9(−1.26447…)8+7.25131…(−1.26447…)7+5.75111…(−1.26447…)6+4.46819…(−1.26447…)5+3.37502…(−1.26447…)4+2.44733…(−1.26447…)3+1.66372…(−1.26447…)2+1.00535…(−1.26447…)+0.45563…=35.92993…v14=−1.24663…
Δv14=∣−1.24663…−(−1.26447…)∣=0.01784…Δv14=0.01784…
v15=−1.24548…:Δv15=0.00114…
f(v14)=(−1.24663…)9+0.90641…(−1.24663…)8+0.82158…(−1.24663…)7+0.74469…(−1.24663…)6+0.67500…(−1.24663…)5+0.61183…(−1.24663…)4+0.55457…(−1.24663…)3+0.50267…(−1.24663…)2+0.45563…(−1.24663…)+4.41299…=−0.03658…f′(v14)=9(−1.24663…)8+7.25131…(−1.24663…)7+5.75111…(−1.24663…)6+4.46819…(−1.24663…)5+3.37502…(−1.24663…)4+2.44733…(−1.24663…)3+1.66372…(−1.24663…)2+1.00535…(−1.24663…)+0.45563…=31.89979…v15=−1.24548…
Δv15=∣−1.24548…−(−1.24663…)∣=0.00114…Δv15=0.00114…
v16=−1.24548…:Δv16=4.44027E−6
f(v15)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−0.00014…f′(v15)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65496…v16=−1.24548…
Δv16=∣−1.24548…−(−1.24548…)∣=4.44027E−6Δv16=4.44027E−6
v17=−1.24548…:Δv17=6.62571E−11
f(v16)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−2.0973E−9f′(v16)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65401…v17=−1.24548…
Δv17=∣−1.24548…−(−1.24548…)∣=6.62571E−11Δv17=6.62571E−11
v≈−1.24548…
Apply long division:v+1.24548…v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…≈0
Find one solution for v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0 using Newton-Raphson:No Solution for v∈R
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0
Newton-Raphson Approximation Definition
f(v)=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
Find f′(v):8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
dvd(v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd(v8)−dvd(0.33906…v7)+dvd(1.24388…v6)−dvd(0.80453…v5)+dvd(1.67704…v4)−dvd(1.47688…v3)+dvd(2.39401…v2)−dvd(2.47902…v)+dvd(3.54320…)
dvd(v8)=8v7
dvd(v8)
Apply the Power Rule: dxd(xa)=a⋅xa−1=8v8−1
Simplify=8v7
dvd(0.33906…v7)=2.37346…v6
dvd(0.33906…v7)
Take the constant out: (a⋅f)′=a⋅f′=0.33906…dvd(v7)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.33906…⋅7v7−1
Simplify=2.37346…v6
dvd(1.24388…v6)=7.46332…v5
dvd(1.24388…v6)
Take the constant out: (a⋅f)′=a⋅f′=1.24388…dvd(v6)
Apply the Power Rule: dxd(xa)=a⋅xa−1=1.24388…⋅6v6−1
Simplify=7.46332…v5
dvd(0.80453…v5)=4.02269…v4
dvd(0.80453…v5)
Take the constant out: (a⋅f)′=a⋅f′=0.80453…dvd(v5)
Apply the Power Rule: dxd(xa)=a⋅xa−1=0.80453…⋅5v5−1
Simplify=4.02269…v4
dvd(1.67704…v4)=6.70817…v3
dvd(1.67704…v4)
Take the constant out: (a⋅f)′=a⋅f′=1.67704…dvd(v4)
Apply the Power Rule: dxd(xa)=a⋅xa−1=1.67704…⋅4v4−1
Simplify=6.70817…v3
dvd(1.47688…v3)=4.43066…v2
dvd(1.47688…v3)
Take the constant out: (a⋅f)′=a⋅f′=1.47688…dvd(v3)
Apply the Power Rule: dxd(xa)=a⋅xa−1=1.47688…⋅3v3−1
Simplify=4.43066…v2
dvd(2.39401…v2)=4.78802…v
dvd(2.39401…v2)
Take the constant out: (a⋅f)′=a⋅f′=2.39401…dvd(v2)
Apply the Power Rule: dxd(xa)=a⋅xa−1=2.39401…⋅2v2−1
Simplify=4.78802…v
dvd(2.47902…v)=2.47902…
dvd(2.47902…v)
Take the constant out: (a⋅f)′=a⋅f′=2.47902…dvdv
Apply the common derivative: dvdv=1=2.47902…⋅1
Simplify=2.47902…
dvd(3.54320…)=0
dvd(3.54320…)
Derivative of a constant: dxd(a)=0=0
=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…+0
Simplify=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
Let v0=1Compute vn+1 until Δvn+1<0.000001
v1=0.65147…:Δv1=0.34852…
f(v0)=18−0.33906…⋅17+1.24388…⋅16−0.80453…⋅15+1.67704…⋅14−1.47688…⋅13+2.39401…⋅12−2.47902…⋅1+3.54320…=4.75863…f′(v0)=8⋅17−2.37346…⋅16+7.46332…⋅15−4.02269…⋅14+6.70817…⋅13−4.43066…⋅12+4.78802…⋅1−2.47902…=13.65367…v1=0.65147…
Δv1=∣0.65147…−1∣=0.34852…Δv1=0.34852…
v2=−2.25263…:Δv2=2.90411…
f(v1)=0.65147…8−0.33906…⋅0.65147…7+1.24388…⋅0.65147…6−0.80453…⋅0.65147…5+1.67704…⋅0.65147…4−1.47688…⋅0.65147…3+2.39401…⋅0.65147…2−2.47902…⋅0.65147…+3.54320…=2.85422…f′(v1)=8⋅0.65147…7−2.37346…⋅0.65147…6+7.46332…⋅0.65147…5−4.02269…⋅0.65147…4+6.70817…⋅0.65147…3−4.43066…⋅0.65147…2+4.78802…⋅0.65147…−2.47902…=0.98282…v2=−2.25263…
Δv2=∣−2.25263…−0.65147…∣=2.90411…Δv2=2.90411…
v3=−1.93475…:Δv3=0.31788…
f(v2)=(−2.25263…)8−0.33906…(−2.25263…)7+1.24388…(−2.25263…)6−0.80453…(−2.25263…)5+1.67704…(−2.25263…)4−1.47688…(−2.25263…)3+2.39401…(−2.25263…)2−2.47902…(−2.25263…)+3.54320…=1053.34912…f′(v2)=8(−2.25263…)7−2.37346…(−2.25263…)6+7.46332…(−2.25263…)5−4.02269…(−2.25263…)4+6.70817…(−2.25263…)3−4.43066…(−2.25263…)2+4.78802…(−2.25263…)−2.47902…=−3313.66679…v3=−1.93475…
Δv3=∣−1.93475…−(−2.25263…)∣=0.31788…Δv3=0.31788…
v4=−1.64441…:Δv4=0.29034…
f(v3)=(−1.93475…)8−0.33906…(−1.93475…)7+1.24388…(−1.93475…)6−0.80453…(−1.93475…)5+1.67704…(−1.93475…)4−1.47688…(−1.93475…)3+2.39401…(−1.93475…)2−2.47902…(−1.93475…)+3.54320…=369.29768…f′(v3)=8(−1.93475…)7−2.37346…(−1.93475…)6+7.46332…(−1.93475…)5−4.02269…(−1.93475…)4+6.70817…(−1.93475…)3−4.43066…(−1.93475…)2+4.78802…(−1.93475…)−2.47902…=−1271.93873…v4=−1.64441…
Δv4=∣−1.64441…−(−1.93475…)∣=0.29034…Δv4=0.29034…
v5=−1.36913…:Δv5=0.27528…
f(v4)=(−1.64441…)8−0.33906…(−1.64441…)7+1.24388…(−1.64441…)6−0.80453…(−1.64441…)5+1.67704…(−1.64441…)4−1.47688…(−1.64441…)3+2.39401…(−1.64441…)2−2.47902…(−1.64441…)+3.54320…=131.68340…f′(v4)=8(−1.64441…)7−2.37346…(−1.64441…)6+7.46332…(−1.64441…)5−4.02269…(−1.64441…)4+6.70817…(−1.64441…)3−4.43066…(−1.64441…)2+4.78802…(−1.64441…)−2.47902…=−478.36033…v5=−1.36913…
Δv5=∣−1.36913…−(−1.64441…)∣=0.27528…Δv5=0.27528…
v6=−1.08732…:Δv6=0.28180…
f(v5)=(−1.36913…)8−0.33906…(−1.36913…)7+1.24388…(−1.36913…)6−0.80453…(−1.36913…)5+1.67704…(−1.36913…)4−1.47688…(−1.36913…)3+2.39401…(−1.36913…)2−2.47902…(−1.36913…)+3.54320…=48.57656…f′(v5)=8(−1.36913…)7−2.37346…(−1.36913…)6+7.46332…(−1.36913…)5−4.02269…(−1.36913…)4+6.70817…(−1.36913…)3−4.43066…(−1.36913…)2+4.78802…(−1.36913…)−2.47902…=−172.37459…v6=−1.08732…
Δv6=∣−1.08732…−(−1.36913…)∣=0.28180…Δv6=0.28180…
v7=−0.75017…:Δv7=0.33714…
f(v6)=(−1.08732…)8−0.33906…(−1.08732…)7+1.24388…(−1.08732…)6−0.80453…(−1.08732…)5+1.67704…(−1.08732…)4−1.47688…(−1.08732…)3+2.39401…(−1.08732…)2−2.47902…(−1.08732…)+3.54320…=19.15306…f′(v6)=8(−1.08732…)7−2.37346…(−1.08732…)6+7.46332…(−1.08732…)5−4.02269…(−1.08732…)4+6.70817…(−1.08732…)3−4.43066…(−1.08732…)2+4.78802…(−1.08732…)−2.47902…=−56.80952…v7=−0.75017…
Δv7=∣−0.75017…−(−1.08732…)∣=0.33714…Δv7=0.33714…
v8=−0.21910…:Δv8=0.53107…
f(v7)=(−0.75017…)8−0.33906…(−0.75017…)7+1.24388…(−0.75017…)6−0.80453…(−0.75017…)5+1.67704…(−0.75017…)4−1.47688…(−0.75017…)3+2.39401…(−0.75017…)2−2.47902…(−0.75017…)+3.54320…=8.46330…f′(v7)=8(−0.75017…)7−2.37346…(−0.75017…)6+7.46332…(−0.75017…)5−4.02269…(−0.75017…)4+6.70817…(−0.75017…)3−4.43066…(−0.75017…)2+4.78802…(−0.75017…)−2.47902…=−15.93620…v8=−0.21910…
Δv8=∣−0.21910…−(−0.75017…)∣=0.53107…Δv8=0.53107…
Cannot find solution
The solutions arev≈0.90641…,v≈−1.24548…
The solutions arev=0,v≈0.90641…,v≈−1.24548…
v=0,v≈0.90641…,v≈−1.24548…
Substitute back v=u2,solve for u
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Solve u2=0.90641…:u=0.90641…,u=−0.90641…
u2=0.90641…
For x2=f(a) the solutions are x=f(a),−f(a)
u=0.90641…,u=−0.90641…
Solve u2=−1.24548…:No Solution for u∈R
u2=−1.24548…
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions are
u=0,u=0.90641…,u=−0.90641…
Substitute back u=sin(x)sin(x)=0,sin(x)=0.90641…,sin(x)=−0.90641…
sin(x)=0,sin(x)=0.90641…,sin(x)=−0.90641…
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=0.90641…:x=arcsin(0.90641…)+2πn,x=π−arcsin(0.90641…)+2πn
sin(x)=0.90641…
Apply trig inverse properties
sin(x)=0.90641…
General solutions for sin(x)=0.90641…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.90641…)+2πn,x=π−arcsin(0.90641…)+2πn
x=arcsin(0.90641…)+2πn,x=π−arcsin(0.90641…)+2πn
sin(x)=−0.90641…:x=arcsin(−0.90641…)+2πn,x=π+arcsin(0.90641…)+2πn
sin(x)=−0.90641…
Apply trig inverse properties
sin(x)=−0.90641…
General solutions for sin(x)=−0.90641…sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.90641…)+2πn,x=π+arcsin(0.90641…)+2πn
x=arcsin(−0.90641…)+2πn,x=π+arcsin(0.90641…)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arcsin(0.90641…)+2πn,x=π−arcsin(0.90641…)+2πn,x=arcsin(−0.90641…)+2πn,x=π+arcsin(0.90641…)+2πn
Show solutions in decimal formx=2πn,x=π+2πn,x=1.25989…+2πn,x=π−1.25989…+2πn,x=−1.25989…+2πn,x=π+1.25989…+2πn