We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Hướng dẫn học tập > College Algebra

Factoring Basics

Learning Objectives

  • Identify and factor the GCF of a polynomial
  • Factor a Trinomial with Leading Coefficient 1
  • Factor by Grouping
When we study fractions, we learn that the greatest common factor (GCF) of two numbers is the largest number that divides evenly into both numbers. For instance, [latex]4[/latex] is the GCF of [latex]16[/latex] and [latex]20[/latex] because it is the largest number that divides evenly into both [latex]16[/latex] and [latex]20[/latex] The GCF of polynomials works the same way: [latex]4x[/latex] is the GCF of [latex]16x[/latex] and [latex]20{x}^{2}[/latex] because it is the largest polynomial that divides evenly into both [latex]16x[/latex] and [latex]20{x}^{2}[/latex]. When factoring a polynomial expression, our first step should be to check for a GCF. Look for the GCF of the coefficients, and then look for the GCF of the variables.

A General Note: Greatest Common Factor

The greatest common factor (GCF) of polynomials is the largest polynomial that divides evenly into the polynomials.

How To: Given a polynomial expression, factor out the greatest common factor.

  1. Identify the GCF of the coefficients.
  2. Identify the GCF of the variables.
  3. Combine to find the GCF of the expression.
  4. Determine what the GCF needs to be multiplied by to obtain each term in the expression.
  5. Write the factored expression as the product of the GCF and the sum of the terms we need to multiply by.

Example: Factoring the Greatest Common Factor

Factor [latex]6{x}^{3}{y}^{3}+45{x}^{2}{y}^{2}+21xy[/latex].

Answer: First, find the GCF of the expression. The GCF of [latex]6,45[/latex], and [latex]21[/latex] is [latex]3[/latex]. The GCF of [latex]{x}^{3},{x}^{2}[/latex], and [latex]x[/latex] is [latex]x[/latex]. (Note that the GCF of a set of expressions in the form [latex]{x}^{n}[/latex] will always be the exponent of lowest degree.) And the GCF of [latex]{y}^{3},{y}^{2}[/latex], and [latex]y[/latex] is [latex]y[/latex]. Combine these to find the GCF of the polynomial, [latex]3xy[/latex]. Next, determine what the GCF needs to be multiplied by to obtain each term of the polynomial. We find that [latex]3xy\left(2{x}^{2}{y}^{2}\right)=6{x}^{3}{y}^{3},3xy\left(15xy\right)=45{x}^{2}{y}^{2}[/latex], and [latex]3xy\left(7\right)=21xy[/latex]. Finally, write the factored expression as the product of the GCF and the sum of the terms we needed to multiply by.

[latex]\left(3xy\right)\left(2{x}^{2}{y}^{2}+15xy+7\right)[/latex]

Analysis of the Solution

After factoring, we can check our work by multiplying. Use the distributive property to confirm that [latex]\left(3xy\right)\left(2{x}^{2}{y}^{2}+15xy+7\right)=6{x}^{3}{y}^{3}+45{x}^{2}{y}^{2}+21xy[/latex].

Try It

Factor [latex]x\left({b}^{2}-a\right)+6\left({b}^{2}-a\right)[/latex] by pulling out the GCF.

Answer: [latex]\left({b}^{2}-a\right)\left(x+6\right)[/latex]

Factoring by Grouping

Trinomials with leading coefficients other than 1 are slightly more complicated to factor. For these trinomials, we can factor by grouping by dividing the x term into the sum of two terms, factoring each portion of the expression separately, and then factoring out the GCF of the entire expression. The trinomial [latex]2{x}^{2}+5x+3[/latex] can be rewritten as [latex]\left(2x+3\right)\left(x+1\right)[/latex] using this process. We begin by rewriting the original expression as [latex]2{x}^{2}+2x+3x+3[/latex] and then factor each portion of the expression to obtain [latex]2x\left(x+1\right)+3\left(x+1\right)[/latex]. We then pull out the GCF of [latex]\left(x+1\right)[/latex] to find the factored expression.

A General Note: Factor by Grouping

To factor a trinomial in the form [latex]a{x}^{2}+bx+c[/latex] by grouping, we find two numbers with a product of [latex]ac[/latex] and a sum of [latex]b[/latex]. We use these numbers to divide the [latex]x[/latex] term into the sum of two terms and factor each portion of the expression separately, then factor out the GCF of the entire expression.

How To: Given a trinomial in the form [latex]a{x}^{2}+bx+c[/latex], factor by grouping.

  1. List factors of [latex]ac[/latex].
  2. Find [latex]p[/latex] and [latex]q[/latex], a pair of factors of [latex]ac[/latex] with a sum of [latex]b[/latex].
  3. Rewrite the original expression as [latex]a{x}^{2}+px+qx+c[/latex].
  4. Pull out the GCF of [latex]a{x}^{2}+px[/latex].
  5. Pull out the GCF of [latex]qx+c[/latex].
  6. Factor out the GCF of the expression.

Example: Factoring a Trinomial by Grouping

Factor [latex]5{x}^{2}+7x - 6[/latex] by grouping.

Answer: We have a trinomial with [latex]a=5,b=7[/latex], and [latex]c=-6[/latex]. First, determine [latex]ac=-30[/latex]. We need to find two numbers with a product of [latex]-30[/latex] and a sum of [latex]7[/latex]. In the table, we list factors until we find a pair with the desired sum.

Factors of [latex]-30[/latex] Sum of Factors
[latex]1,-30[/latex] [latex]-29[/latex]
[latex]-1,30[/latex] 29
[latex]2,-15[/latex] [latex]-13[/latex]
[latex]-2,15[/latex] 13
[latex]3,-10[/latex] [latex]-7[/latex]
[latex]-3,10[/latex] 7
So [latex]p=-3[/latex] and [latex]q=10[/latex].
[latex]\begin{array}{cc}5{x}^{2}-3x+10x - 6 \hfill & \text{Rewrite the original expression as }a{x}^{2}+px+qx+c.\hfill \\ x\left(5x - 3\right)+2\left(5x - 3\right)\hfill & \text{Factor out the GCF of each part}.\hfill \\ \left(5x - 3\right)\left(x+2\right)\hfill & \text{Factor out the GCF}\text{ }\text{ of the expression}.\hfill \end{array}[/latex]

Analysis of the Solution

We can check our work by multiplying. Use FOIL to confirm that [latex]\left(5x - 3\right)\left(x+2\right)=5{x}^{2}+7x - 6[/latex].

Try It

Factor the following.
  1. [latex]2{x}^{2}+9x+9[/latex]
  2. [latex]6{x}^{2}+x - 1[/latex]

Answer:

  1. [latex]\left(2x+3\right)\left(x+3\right)[/latex]
  2. [latex]\left(3x - 1\right)\left(2x+1\right)[/latex]

In the next video we show another example of how to factor a trinomial by grouping. https://youtu.be/agDaQ_cZnNc

Licenses & Attributions

CC licensed content, Original

CC licensed content, Shared previously

  • College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].
  • Example: Greatest Common Factor. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
  • Factoring Trinomials by Grouping. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
  • Question ID 7886, 7897, 7908. Authored by: Tyler Wallace. License: CC BY: Attribution. License terms: IMathAS Community License CC- BY + GPL.

CC licensed content, Specific attribution