Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
asymptotes of f(x)=(x^4)/(x^2+3)
asymptotes\:f(x)=\frac{x^{4}}{x^{2}+3}
range of (x+3)/x
range\:\frac{x+3}{x}
inverse of f(x)=5
inverse\:f(x)=5
inverse of f(x)=-x+15
inverse\:f(x)=-x+15
domain of f(x)=10
domain\:f(x)=10
domain of f(x)=(9(x+11))/(11x)
domain\:f(x)=\frac{9(x+11)}{11x}
monotone f(x)= x/(x^2+6x+8)
monotone\:f(x)=\frac{x}{x^{2}+6x+8}
symmetry x^2-x-6
symmetry\:x^{2}-x-6
f(x)= 2/(x-1)
f(x)=\frac{2}{x-1}
domain of x-sqrt(x)
domain\:x-\sqrt{x}
range of 10^{x-2}-5
range\:10^{x-2}-5
domain of (2x-1)/(x^3-4x)
domain\:\frac{2x-1}{x^{3}-4x}
asymptotes of f(x)= 7/(3+e^x)
asymptotes\:f(x)=\frac{7}{3+e^{x}}
monotone f(x)=6x+4/x
monotone\:f(x)=6x+\frac{4}{x}
slope of x+2y=-4
slope\:x+2y=-4
line (0,4),(9,8)
line\:(0,4),(9,8)
perpendicular 3x+2y+3=0
perpendicular\:3x+2y+3=0
domain of (x-2)/(x+4)
domain\:\frac{x-2}{x+4}
domain of f(x)=-7x+7
domain\:f(x)=-7x+7
intercepts of f(x)=-5x+3
intercepts\:f(x)=-5x+3
domain of csc(((x*pi))/2)+1
domain\:\csc(\frac{(x\cdot\:π)}{2})+1
asymptotes of f(x)=(-5x-10)/(x^2+2x)
asymptotes\:f(x)=\frac{-5x-10}{x^{2}+2x}
symmetry (x-5)/(x^2-25)
symmetry\:\frac{x-5}{x^{2}-25}
inverse of f(x)=19-2x
inverse\:f(x)=19-2x
domain of f(x)=2x^2-5x+3
domain\:f(x)=2x^{2}-5x+3
line m=-1/2 ,(8,-12)
line\:m=-\frac{1}{2},(8,-12)
symmetry 3x^2+7x+5
symmetry\:3x^{2}+7x+5
inverse of f(x)=-(6^x)/3
inverse\:f(x)=-\frac{6^{x}}{3}
inverse of f(x)=sqrt(x+3)-6
inverse\:f(x)=\sqrt{x+3}-6
inverse of f(x)=7x+2
inverse\:f(x)=7x+2
y=x^2-2
y=x^{2}-2
distance (-6,4),(6,-3)
distance\:(-6,4),(6,-3)
inverse of f(x)=-x^2,x<= 0
inverse\:f(x)=-x^{2},x\le\:0
intercepts of y=sqrt(x^2-16)
intercepts\:y=\sqrt{x^{2}-16}
domain of 1/(sqrt(x^2-4x))
domain\:\frac{1}{\sqrt{x^{2}-4x}}
inflection f(x)=2x^3+3x^2-36x
inflection\:f(x)=2x^{3}+3x^{2}-36x
intercepts of f(x)=x+y=-1
intercepts\:f(x)=x+y=-1
inflection f(x)= x/(1+x^2)
inflection\:f(x)=\frac{x}{1+x^{2}}
inverse of x^4+32x^2+256
inverse\:x^{4}+32x^{2}+256
critical f(x)=xsqrt(x+1)
critical\:f(x)=x\sqrt{x+1}
extreme sqrt(1-(x-3)^2)
extreme\:\sqrt{1-(x-3)^{2}}
domain of f(x)=sqrt(x^3-6x^2+8x)
domain\:f(x)=\sqrt{x^{3}-6x^{2}+8x}
extreme f(x)=x^3-12x+1
extreme\:f(x)=x^{3}-12x+1
intercepts of (4x+9)/(3x-2)
intercepts\:\frac{4x+9}{3x-2}
slope ofintercept x+2y=16
slopeintercept\:x+2y=16
domain of x^2-2x-35
domain\:x^{2}-2x-35
asymptotes of f(x)= 9/x+x+1
asymptotes\:f(x)=\frac{9}{x}+x+1
inverse of f(x)=-1313/2050 x+6963/5125
inverse\:f(x)=-\frac{1313}{2050}x+\frac{6963}{5125}
inverse of f(x)=5x+12
inverse\:f(x)=5x+12
domain of ln(x)+ln(7-x)
domain\:\ln(x)+\ln(7-x)
critical f(x)=3xsqrt(4x^2+4)
critical\:f(x)=3x\sqrt{4x^{2}+4}
inverse of (3x-7)/5
inverse\:\frac{3x-7}{5}
extreme f(x)=-x^2-6x-6
extreme\:f(x)=-x^{2}-6x-6
inverse of 1/(csc(x))
inverse\:\frac{1}{\csc(x)}
critical xe^{x^2}
critical\:xe^{x^{2}}
inverse of f(x)=(sqrt(y+3))/4
inverse\:f(x)=\frac{\sqrt{y+3}}{4}
intercepts of f(x)=(x^2-25)(x^3+8)^3
intercepts\:f(x)=(x^{2}-25)(x^{3}+8)^{3}
monotone f(x)=x(1-x)(1+x)
monotone\:f(x)=x(1-x)(1+x)
extreme x^4-4x^3+8
extreme\:x^{4}-4x^{3}+8
intercepts of f(x)=(x+2)/(2x+6)
intercepts\:f(x)=\frac{x+2}{2x+6}
inverse of f(x)=ln(3x)
inverse\:f(x)=\ln(3x)
critical f(x)= 1/x
critical\:f(x)=\frac{1}{x}
range of (x^2-16)/(2x+8)
range\:\frac{x^{2}-16}{2x+8}
shift-6cos(8x-pi/2)
shift\:-6\cos(8x-\frac{π}{2})
extreme f(x)=x^2-4x+3
extreme\:f(x)=x^{2}-4x+3
perpendicular y= 3/2 x+0,(-4,2)
perpendicular\:y=\frac{3}{2}x+0,(-4,2)
domain of f(x)=sqrt(x/(x^2-2x-35))
domain\:f(x)=\sqrt{\frac{x}{x^{2}-2x-35}}
domain of-(1/2)^x-1
domain\:-(\frac{1}{2})^{x}-1
intercepts of f(x)=(2x+18)/(2x^2+13x-45)
intercepts\:f(x)=\frac{2x+18}{2x^{2}+13x-45}
line (5,6),(7,8)
line\:(5,6),(7,8)
asymptotes of f(x)=(2x^2+1)/(2x^3-4x^2)
asymptotes\:f(x)=\frac{2x^{2}+1}{2x^{3}-4x^{2}}
slope ofintercept 5x-y=3
slopeintercept\:5x-y=3
inverse of f(x)=(6-x)^{1/2}
inverse\:f(x)=(6-x)^{\frac{1}{2}}
range of x\sqrt[3]{x+8}
range\:x\sqrt[3]{x+8}
inverse of f(x)=5(x-3)^2
inverse\:f(x)=5(x-3)^{2}
domain of 1/(2x+4)
domain\:\frac{1}{2x+4}
range of (4x^2+4)/(x^2+6x+9)
range\:\frac{4x^{2}+4}{x^{2}+6x+9}
parity f(x)= 1/4 x^6-5x^2
parity\:f(x)=\frac{1}{4}x^{6}-5x^{2}
domain of e^{x+1}-3
domain\:e^{x+1}-3
perpendicular y= 3/4 x
perpendicular\:y=\frac{3}{4}x
intercepts of f(x)=x^2+14x+46
intercepts\:f(x)=x^{2}+14x+46
inverse of (x+16)/(x-4)
inverse\:\frac{x+16}{x-4}
critical f(x)=(x-3)(x-7)^3+12
critical\:f(x)=(x-3)(x-7)^{3}+12
domain of f(x)= 1/(\frac{x){x+1}}
domain\:f(x)=\frac{1}{\frac{x}{x+1}}
inverse of f(x)=1
inverse\:f(x)=1
monotone f(x)=1-5*x*e^{-x}
monotone\:f(x)=1-5\cdot\:x\cdot\:e^{-x}
inverse of y=3^x+5
inverse\:y=3^{x}+5
inverse of (3x-4)/(x-2)
inverse\:\frac{3x-4}{x-2}
inverse of f(x)= 1/(2+x)
inverse\:f(x)=\frac{1}{2+x}
inverse of f(x)=(x-1)/9
inverse\:f(x)=\frac{x-1}{9}
inverse of f(x)=500(0.04-x^2)
inverse\:f(x)=500(0.04-x^{2})
inverse of y=sqrt(x+2)
inverse\:y=\sqrt{x+2}
asymptotes of f(x)=(x^2+5)/x
asymptotes\:f(x)=\frac{x^{2}+5}{x}
domain of g(w)=(w^2-3w)/(2w^3+w^2-21w)
domain\:g(w)=\frac{w^{2}-3w}{2w^{3}+w^{2}-21w}
domain of f(x)= 1/(1/x)
domain\:f(x)=\frac{1}{\frac{1}{x}}
inverse of f(x)=(x+3)/(2x)
inverse\:f(x)=\frac{x+3}{2x}
inverse of y=(x-3)^3
inverse\:y=(x-3)^{3}
intercepts of xsqrt(9-x)
intercepts\:x\sqrt{9-x}
domain of (sqrt(x))/(5x^2+4x-1)
domain\:\frac{\sqrt{x}}{5x^{2}+4x-1}
range of x^4-4x^2
range\:x^{4}-4x^{2}
1
..
132
133
134
135
136
..
1324