Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)=(x+4)/(x^2-64)
domain\:f(x)=\frac{x+4}{x^{2}-64}
perpendicular y= 6/7 x+6
perpendicular\:y=\frac{6}{7}x+6
parity t/(sin(t))
parity\:\frac{t}{\sin(t)}
domain of y= 1/(x-1)
domain\:y=\frac{1}{x-1}
inverse of f(x)=-3x+6
inverse\:f(x)=-3x+6
domain of (2x^2-3)/(x^2-1)
domain\:\frac{2x^{2}-3}{x^{2}-1}
inflection f(x)= 1/(6x^2+3)
inflection\:f(x)=\frac{1}{6x^{2}+3}
shift 2sin(4x-pi)
shift\:2\sin(4x-π)
range of-1/6 cos(6x)
range\:-\frac{1}{6}\cos(6x)
domain of (18x^2)/((2-3x^3)^3)
domain\:\frac{18x^{2}}{(2-3x^{3})^{3}}
slope of 2x+3y=1470
slope\:2x+3y=1470
parity (|x|)/(x^2+1)
parity\:\frac{\left|x\right|}{x^{2}+1}
inverse of x^2+6
inverse\:x^{2}+6
distance (3,6),(2,3)
distance\:(3,6),(2,3)
midpoint (-1,1),(7,-4)
midpoint\:(-1,1),(7,-4)
perpendicular y= 1/4 x
perpendicular\:y=\frac{1}{4}x
domain of \sqrt[6]{x^5}
domain\:\sqrt[6]{x^{5}}
domain of x^2+3x-4
domain\:x^{2}+3x-4
domain of f(x)=(x^4)/(x^2+x-42)
domain\:f(x)=\frac{x^{4}}{x^{2}+x-42}
asymptotes of (x^2-4)/(x^2-5x+6)
asymptotes\:\frac{x^{2}-4}{x^{2}-5x+6}
range of (x-4)^2-1
range\:(x-4)^{2}-1
domain of f(x)=x^2-2
domain\:f(x)=x^{2}-2
inverse of f(x)=(3xsqrt(x))/8
inverse\:f(x)=\frac{3x\sqrt{x}}{8}
inverse of f(x)=sqrt(-x)-4
inverse\:f(x)=\sqrt{-x}-4
critical x^8(x-4)^7
critical\:x^{8}(x-4)^{7}
inverse of y=3^x
inverse\:y=3^{x}
domain of 2(x-4)^2+3
domain\:2(x-4)^{2}+3
asymptotes of f(x)=4
asymptotes\:f(x)=4
distance (-9,-6),(-2,-2)
distance\:(-9,-6),(-2,-2)
critical 4x^3+48x^2+6x+3
critical\:4x^{3}+48x^{2}+6x+3
intercepts of f(x)=x^2-12x+36
intercepts\:f(x)=x^{2}-12x+36
asymptotes of f(x)=(x^2+9x+20)/(4x+16)
asymptotes\:f(x)=\frac{x^{2}+9x+20}{4x+16}
domain of x^6
domain\:x^{6}
perpendicular y=3x,(2,6)
perpendicular\:y=3x,(2,6)
slope ofintercept x-3y=6
slopeintercept\:x-3y=6
domain of f(x)=(sqrt(9+x))/(4-x)
domain\:f(x)=\frac{\sqrt{9+x}}{4-x}
range of (3x)/(x-1)
range\:\frac{3x}{x-1}
domain of f(x)=(x+6)/(sqrt(x^2-3x-4))
domain\:f(x)=\frac{x+6}{\sqrt{x^{2}-3x-4}}
asymptotes of f(x)=0.2(x-2)(x+1)(x-5)
asymptotes\:f(x)=0.2(x-2)(x+1)(x-5)
midpoint (-3,4),(0,-3)
midpoint\:(-3,4),(0,-3)
inverse of f(x)=3xsqrt(x)
inverse\:f(x)=3x\sqrt{x}
range of f(x)=x-5
range\:f(x)=x-5
domain of (x-2)/(x^2+4x+4)
domain\:\frac{x-2}{x^{2}+4x+4}
slope of y=-3x+7
slope\:y=-3x+7
perpendicular y=-x/2+6
perpendicular\:y=-\frac{x}{2}+6
midpoint (0,-2),(4,2)
midpoint\:(0,-2),(4,2)
inflection f(x)=4x^3-48x-9
inflection\:f(x)=4x^{3}-48x-9
asymptotes of f(x)=7(2)^x
asymptotes\:f(x)=7(2)^{x}
slope ofintercept 10-4x= 1/3 y
slopeintercept\:10-4x=\frac{1}{3}y
midpoint (-5,5),(-2,10)
midpoint\:(-5,5),(-2,10)
domain of f(x)=(1/(sqrt(x)))^2-9
domain\:f(x)=(\frac{1}{\sqrt{x}})^{2}-9
parity f(x)=sin(2x)
parity\:f(x)=\sin(2x)
midpoint (-8,-3),(10,9)
midpoint\:(-8,-3),(10,9)
extreme f(x)=x^2-12x+1
extreme\:f(x)=x^{2}-12x+1
parity sqrt(1+x^2sin^2(x)+x^2cos^2(x))
parity\:\sqrt{1+x^{2}\sin^{2}(x)+x^{2}\cos^{2}(x)}
critical f(x)=-x^2+2x-5
critical\:f(x)=-x^{2}+2x-5
domain of f(x)=(x+1)/(sqrt(5x^2-16))
domain\:f(x)=\frac{x+1}{\sqrt{5x^{2}-16}}
line (2,0),(3,1)
line\:(2,0),(3,1)
range of-2/(x+1)+2
range\:-\frac{2}{x+1}+2
domain of f(x)=(sqrt(5-x))
domain\:f(x)=(\sqrt{5-x})
inflection x^{(4)}-8x^{(3)}
inflection\:x^{(4)}-8x^{(3)}
extreme f(x)=-16t^2+65t+6
extreme\:f(x)=-16t^{2}+65t+6
domain of f(x)=(2x+9)/(x-3)
domain\:f(x)=\frac{2x+9}{x-3}
domain of f(x)=sqrt(x+2)+3
domain\:f(x)=\sqrt{x+2}+3
inverse of f(x)=5x-7
inverse\:f(x)=5x-7
inverse of y=(e^x)/(1+2e^x)
inverse\:y=\frac{e^{x}}{1+2e^{x}}
domain of f(x)=sqrt(((5-x))/((x+3)))
domain\:f(x)=\sqrt{\frac{(5-x)}{(x+3)}}
range of y=e(6x-1/6)+6
range\:y=e(6x-\frac{1}{6})+6
asymptotes of 6/(x-7)
asymptotes\:\frac{6}{x-7}
inverse of log_{2}(3-x)+1
inverse\:\log_{2}(3-x)+1
domain of f(x)= 1/(sqrt(x+7))
domain\:f(x)=\frac{1}{\sqrt{x+7}}
midpoint (-2,1),(-4,-2)
midpoint\:(-2,1),(-4,-2)
asymptotes of f(x)=(x^3-27)/(x^2+2x-15)
asymptotes\:f(x)=\frac{x^{3}-27}{x^{2}+2x-15}
parity f(x)=|x-2|
parity\:f(x)=\left|x-2\right|
domain of f(x)=x^2+y^2=16
domain\:f(x)=x^{2}+y^{2}=16
inverse of f(x)=log_{2}(x+6)
inverse\:f(x)=\log_{2}(x+6)
intercepts of y=x^2-6x+3
intercepts\:y=x^{2}-6x+3
symmetry y=2x-10
symmetry\:y=2x-10
inverse of f(x)= 1/6 x^3-3
inverse\:f(x)=\frac{1}{6}x^{3}-3
domain of f(x)=(-13)/((4+x)^2)
domain\:f(x)=\frac{-13}{(4+x)^{2}}
inverse of f(x)=\sqrt[3]{9x+4}
inverse\:f(x)=\sqrt[3]{9x+4}
intercepts of (x^2+x-20)/(5x+25)
intercepts\:\frac{x^{2}+x-20}{5x+25}
slope ofintercept 20x+7y=19
slopeintercept\:20x+7y=19
slope of 7y=1
slope\:7y=1
asymptotes of f(x)=4^{x+1}-5
asymptotes\:f(x)=4^{x+1}-5
asymptotes of f(x)=(17x^2)/(5x^2+6)
asymptotes\:f(x)=\frac{17x^{2}}{5x^{2}+6}
asymptotes of f(x)=(x^2-6x)/(x^4-1296)
asymptotes\:f(x)=\frac{x^{2}-6x}{x^{4}-1296}
parallel Y(x)=-2/3 x+7,(3,3)
parallel\:Y(x)=-\frac{2}{3}x+7,(3,3)
intercepts of f(x)=-3x
intercepts\:f(x)=-3x
asymptotes of sqrt((|x^2+x+1|)/(x^2-1))
asymptotes\:\sqrt{\frac{\left|x^{2}+x+1\right|}{x^{2}-1}}
inverse of f(x)=(x+3)^2,x<=-3
inverse\:f(x)=(x+3)^{2},x\le\:-3
domain of f(x)=xe^{1/x}
domain\:f(x)=xe^{\frac{1}{x}}
extreme f(x,y)=x
extreme\:f(x,y)=x
inflection (x+x)/((1+2ln(2x)))
inflection\:\frac{x+x}{(1+2\ln(2x))}
inverse of f(x)=x^2-4x-2
inverse\:f(x)=x^{2}-4x-2
inverse of y=ln(x+2)
inverse\:y=\ln(x+2)
range of y=sqrt((x+5)/(x-2))
range\:y=\sqrt{\frac{x+5}{x-2}}
inverse of f(x)=((1+9x))/(4-4x)
inverse\:f(x)=\frac{(1+9x)}{4-4x}
extreme f(x)= 1/((x+1)^2)
extreme\:f(x)=\frac{1}{(x+1)^{2}}
monotone f(x)=(4^x)/(1+4^x)
monotone\:f(x)=\frac{4^{x}}{1+4^{x}}
1
..
116
117
118
119
120
..
1324