Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (1/(sqrt(2))+1/(sqrt(x)))
\int\:(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{x}})dx
(dy)/(dx)=((x-4))/(y+3)
\frac{dy}{dx}=\frac{(x-4)}{y+3}
slope of (1,-7),(2,-1)
slope\:(1,-7),(2,-1)
integral of e^{x/3}
\int\:e^{\frac{x}{3}}dx
taylor ln(x+1+sqrt(x^2+2x)),1
taylor\:\ln(x+1+\sqrt{x^{2}+2x}),1
integral from-6 to-1 of 8
\int\:_{-6}^{-1}8dx
integral of (x+4)^2(x-4)
\int\:(x+4)^{2}(x-4)dx
maclaurin x^2
maclaurin\:x^{2}
taylor e^t
taylor\:e^{t}
derivative of (250000x^2/((2x+1)^2))
\frac{d}{dx}(\frac{250000x^{2}}{(2x+1)^{2}})
(d^2)/(dx^2)(x^2e^{-x^2})
\frac{d^{2}}{dx^{2}}(x^{2}e^{-x^{2}})
integral of 3+2xy^2
\int\:3+2xy^{2}dx
integral of 5e^{3x+2}
\int\:5e^{3x+2}dx
integral of 10tan^3(x)
\int\:10\tan^{3}(x)dx
derivative of (2ln(x)/x)
\frac{d}{dx}(\frac{2\ln(x)}{x})
tangent of f(x)=7 x/((3+x^2)),\at x=2
tangent\:f(x)=7\frac{x}{(3+x^{2})},\at\:x=2
integral of (y^2-y)
\int\:(y^{2}-y)dy
derivative of ln((3+e^{2x}/(3-e^{2x)}))
\frac{d}{dx}(\ln(\frac{3+e^{2x}}{3-e^{2x}}))
integral from 0 to N of e^{-st}sin(3t)
\int\:_{0}^{N}e^{-st}\sin(3t)dt
derivative of xe^x+2e^x
\frac{d}{dx}(xe^{x}+2e^{x})
2y^'=y^3cos(x)
2y^{\prime\:}=y^{3}\cos(x)
limit as x approaches 0 of x^4sin(2/x)
\lim\:_{x\to\:0}(x^{4}\sin(\frac{2}{x}))
derivative of g(u)=sqrt(7)u+sqrt(13u)
derivative\:g(u)=\sqrt{7}u+\sqrt{13u}
(\partial)/(\partial x)(xe^{3xy})
\frac{\partial\:}{\partial\:x}(xe^{3xy})
integral of (cos(2sqrt(x)))/(sqrt(x))
\int\:\frac{\cos(2\sqrt{x})}{\sqrt{x}}dx
integral of 8cos(θ)cos^5(sin(θ))
\int\:8\cos(θ)\cos^{5}(\sin(θ))dθ
d/(dθ)(16sin(θ))
\frac{d}{dθ}(16\sin(θ))
derivative of 1/(5x+2)
\frac{d}{dx}(\frac{1}{5x+2})
derivative of (ln(3x))^2
derivative\:(\ln(3x))^{2}
integral from-1 to 3 of x^3+2x-5
\int\:_{-1}^{3}x^{3}+2x-5dx
(\partial)/(\partial x)(1x+14y)
\frac{\partial\:}{\partial\:x}(1x+14y)
derivative of 2+x^4
\frac{d}{dx}(2+x^{4})
derivative of-7x^9
\frac{d}{dx}(-7x^{9})
inverse oflaplace 1/(7s^2+37.4s+19990)
inverselaplace\:\frac{1}{7s^{2}+37.4s+19990}
derivative of (-3+x^2^{-1})
\frac{d}{dx}((-3+x^{2})^{-1})
inverse oflaplace ((1+e^{-2s})^2)/(s+2)
inverselaplace\:\frac{(1+e^{-2s})^{2}}{s+2}
derivative of sin(x^2+3)
\frac{d}{dx}(\sin(x^{2}+3))
integral from-1 to 1 of sqrt(x+1)
\int\:_{-1}^{1}\sqrt{x+1}dx
limit as n approaches infinity of (1+\sqrt[3]{n})/(1+\sqrt[3]{n+1)}
\lim\:_{n\to\:\infty\:}(\frac{1+\sqrt[3]{n}}{1+\sqrt[3]{n+1}})
(dx)/(dt)=e^t
\frac{dx}{dt}=e^{t}
integral of (2xy-sin(x))
\int\:(2xy-\sin(x))dx
tangent of y=x^3-4x,(-2,0)
tangent\:y=x^{3}-4x,(-2,0)
integral from 1 to e^2 of (ln^8(x^2))/x
\int\:_{1}^{e^{2}}\frac{\ln^{8}(x^{2})}{x}dx
tangent of 5e^x
tangent\:5e^{x}
integral of 2x(-e^{-x})
\int\:2x(-e^{-x})dx
tangent of y=3x^2+3,(2,15)
tangent\:y=3x^{2}+3,(2,15)
(\partial)/(\partial x)(e^{kx-mt})
\frac{\partial\:}{\partial\:x}(e^{kx-mt})
derivative of x^2arctan(8x)
\frac{d}{dx}(x^{2}\arctan(8x))
integral of 9cos(t)
\int\:9\cos(t)dt
derivative of (ln(x))/x
derivative\:\frac{\ln(x)}{x}
integral of (x^2-3x-10)/(x+2)
\int\:\frac{x^{2}-3x-10}{x+2}dx
limit as x approaches 0+of xcos(3/x)
\lim\:_{x\to\:0+}(x\cos(\frac{3}{x}))
limit as x approaches 1+of 2x-1
\lim\:_{x\to\:1+}(2x-1)
derivative of 3xln(x)
\frac{d}{dx}(3x\ln(x))
sum from n=1 to infinity of 2-8(0.9)^n
\sum\:_{n=1}^{\infty\:}2-8(0.9)^{n}
integral of x^2sqrt(x^3+17)
\int\:x^{2}\sqrt{x^{3}+17}dx
derivative of x^{1/2}ln(x)
\frac{d}{dx}(x^{\frac{1}{2}}\ln(x))
derivative of (2x^2-5^{-12})
\frac{d}{dx}((2x^{2}-5)^{-12})
(\partial}{\partial u}(\frac{(u+v))/2)
\frac{\partial\:}{\partial\:u}(\frac{(u+v)}{2})
(\partial)/(\partial x)(x^2ycos(z/t))
\frac{\partial\:}{\partial\:x}(x^{2}y\cos(\frac{z}{t}))
(\partial)/(\partial x)((-3x-y)/(y^2+2x^2))
\frac{\partial\:}{\partial\:x}(\frac{-3x-y}{y^{2}+2x^{2}})
(\partial)/(\partial x)(e^{2^x})
\frac{\partial\:}{\partial\:x}(e^{2^{x}})
y^'=20x-2
y^{\prime\:}=20x-2
derivative of sqrt(2)x+e^x+e^{-x}
\frac{d}{dx}(\sqrt{2}x+e^{x}+e^{-x})
derivative of F(x)=sin(7x)+cos(4x)
derivative\:F(x)=\sin(7x)+\cos(4x)
derivative of (10x/(x^2+1))
\frac{d}{dx}(\frac{10x}{x^{2}+1})
derivative of (3x+8)^2
derivative\:(3x+8)^{2}
integral of cos(7t)
\int\:\cos(7t)dt
derivative of 2x^3-1
derivative\:2x^{3}-1
tangent of y=(1+2x)^{11},(0,1)
tangent\:y=(1+2x)^{11},(0,1)
inverse oflaplace ((2s-1))/(s^2(s+1)^3)
inverselaplace\:\frac{(2s-1)}{s^{2}(s+1)^{3}}
integral of (x^5+8x^3-9x^2+7x-5)
\int\:(x^{5}+8x^{3}-9x^{2}+7x-5)dx
integral of (e^x+1/(e^x))^2
\int\:(e^{x}+\frac{1}{e^{x}})^{2}dx
integral from 0 to 1 of cos(x^2)
\int\:_{0}^{1}\cos(x^{2})dx
2t*(dy)/(dt)-4y=sqrt(t)
2t\cdot\:\frac{dy}{dt}-4y=\sqrt{t}
integral of ((x^2)/4+4x+19)^2
\int\:(\frac{x^{2}}{4}+4x+19)^{2}dx
(8y^2-xy)dx+x^2dy=0
(8y^{2}-xy)dx+x^{2}dy=0
(e^xsin(x))^'
(e^{x}\sin(x))^{\prime\:}
integral of 13x^2
\int\:13x^{2}dx
derivative of (x^2-5x+8)(3x^2-2)
derivative\:(x^{2}-5x+8)(3x^{2}-2)
inverse oflaplace 1/(s^5)
inverselaplace\:\frac{1}{s^{5}}
area y=0.7(x+0.2)^3+4,1,-0.1
area\:y=0.7(x+0.2)^{3}+4,1,-0.1
derivative of ln((9+e^x/(9-e^x)))
\frac{d}{dx}(\ln(\frac{9+e^{x}}{9-e^{x}}))
derivative of e^{x^2}2x
\frac{d}{dx}(e^{x^{2}}2x)
integral of (sin(2x))/(2cos(x))
\int\:\frac{\sin(2x)}{2\cos(x)}dx
integral of sqrt(x)sin(sqrt(x))
\int\:\sqrt{x}\sin(\sqrt{x})dx
(\partial)/(\partial x)(cos(xy)x)
\frac{\partial\:}{\partial\:x}(\cos(xy)x)
(3x^2-12)^'
(3x^{2}-12)^{\prime\:}
derivative of x^2sqrt(49-x^2)
derivative\:x^{2}\sqrt{49-x^{2}}
tangent of f(x)=x^3+sqrt(x),\at x=1
tangent\:f(x)=x^{3}+\sqrt{x},\at\:x=1
y^{''}= 2/(x^3)
y^{\prime\:\prime\:}=\frac{2}{x^{3}}
integral from 0 to pi/2 of 2cos^2(x)
\int\:_{0}^{\frac{π}{2}}2\cos^{2}(x)dx
limit as x approaches-0 of (6x)/(x^4)
\lim\:_{x\to\:-0}(\frac{6x}{x^{4}})
inverse oflaplace (-4e^{(-s)}*(e^3))/(((s-3)(s-4)(s+1)))
inverselaplace\:\frac{-4e^{(-s)}\cdot\:(e^{3})}{((s-3)(s-4)(s+1))}
y^'+y=e^{-2t}
y^{\prime\:}+y=e^{-2t}
integral from 6 to 8 of (20)/((x-6)^3)
\int\:_{6}^{8}\frac{20}{(x-6)^{3}}dx
derivative of {f}(x(e^x))
\frac{d}{dx}({f}(x)(e^{x}))
y^'-6y^'+9y=0
y^{\prime\:}-6y^{\prime\:}+9y=0
sum from n=0 to infinity of 3(-1/3)^n
\sum\:_{n=0}^{\infty\:}3(-\frac{1}{3})^{n}
tangent of y=x^3-2x+1,(4,57)
tangent\:y=x^{3}-2x+1,(4,57)
1
..
147
148
149
150
151
..
2459